·§¸¶¤Ç¤¹¡£¥·¥ó¥Ý¥¸¥¦¥à¤ÎµÏ¿¤ò¤Þ¤È¤Þ¤Ã¤¿¤È¤³¤í¤Þ¤ÇÁ÷¤ê¤Þ¤¹¡£ ɽ¸½ÏÀ¥Û¡¼¥à¥Ú¡¼¥¸Åù¤Ç¤´ÍøÍѤ¯¤À¤µ¤¤¡£ÉÔ´°Á´¤Ê¤â¤Î¤À¤È¤ª¤â¤¤ ¤Þ¤¹¤¬¡¢ÄûÀµ¡¢Äɲᢺï½üÅù¤Ï»ä¤Þ¤Ç¤´Ï¢Íí¤¯¤À¤µ¤¤¡£¥×¥ê¥ó¥È¥¢ ¥¦¥È¤·¤¿¤â¤Î¤Ï¼¡²ó¤ªÌܤˤ«¤«¤Ã¤¿¤È¤¤ªÅϤ·¤·¤Þ¤¹¡£¸µ¤Î¸¶¹Æ¤Ï °ìÂÀϺ7¤Ç¤¹¡£°ìÅÙ¤ËÁ÷¤ì¤Ê¤¤¤Î¤Ç²¿²ó¤«¤Ëʬ³ä¤·¤Þ¤¹¡£(¤«¤Ë¹¾ ¤µ¤ó¤Î³ª¤È¤¤¤¦»ú¤¬¤Ê¤¤¤Î¤Çºî¤ë¤Î¤ò¥µ¥Ü¤Ã¤Æ³ª¤ò»È¤Ã¤Æ¤¤¤Þ¤¹¡£ )
·§¸¶·¼ºî Ä»¼èÂç³Ø¹©³ØÉôÃÎǽ¾ðÊó¹©³Ø²Ê 680Ä»¼è»Ô¸Ð»³Ä®Æî4-101 PHONE(DI):0857-31-5624 FAX :0857-31-5678 E-MAIL :kumahara@ike.tottori-u.ac.jp
ɽ¸½ÏÀ´Ø·¸¥·¥ó¥Ý¥¸¥¦¥àµÏ¿ ÊÔ½¸ÀÕǤ ·§¸¶·¼ºî 1997.3.26¹¹¿· 1956(¾¼31) Âè1²óÀÖÁÒ¥»¥ß¥Ê¡¼ 1956 July25-Aug.1 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö Èø´Ø±Ñ¼ù Connections Ìî¿å¹î̦ Homogeneous space ¾å¤Î invariant linear connection ¤È¤½¤Î±þÍÑ ´äËÙĹ·Ä ÂоΥ꡼¥Þ¥ó¶õ´Ö¾å¤ÎÉÔÆ°ÅÀÄêÍý °ËÀª´´Éס¦¿ù±º¸÷Éס¦ºØÆ£ÀµÉ§ ÂоΥ꡼¥Þ¥ó¿ÍÍÂΤÎʬÎà¤Ë¤Ä¤¤¤Æ Ìî¿å¹î̦ Kahlerian connection ¤Ë´Ø¤¹¤ë´ðËÜÄêÍý ¾¾ÅçÍ¿»° Hermitian symmetric space ¤Ë¤Ä¤¤¤Æ ÂìÂôÀºÆó Connection and characteristic classes ¼¾å¿®¸ã Fundamental characteristic classes of sphere bundles ÃæÌîÌÐÃË Analytic vector bundle ¤Ë¤Ä¤¤¤Æ º´Éð°ìϺ Symplectic geometry ¤Ë¤Ä¤¤¤Æ 1958(¾¼33) Âè3²óÀÖÁÒ¥»¥ß¥Ê¡¼¡Ö¿ÍÍÂΤȰÌÁê´ö²¿³Ø¡× 1958 July 25-30 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö µCharacteristic classes and homogeneous spaces (A.Borel-F.Hirzebruch) ¾Ò²ð 1.Compact Lie groups ¿ù±º¸÷É× 2.Topological preliminaries ºØÆ£´îͨ 3.Roots and characteristic classes ºØÆ£´îͨ 4.Roots ¤ÈÉÔÊÑÊ£Áǹ½Â¤ °ËÀª´´É׾Π5.Homogeneous space G/V ¤È Riemann-Roch-Hirzebruch ¤ÎÄêÍý Åļ°ìϺ ¶Ä¹Ìî Àµ ÅùÊýŪ¤Ê¥ê¡¼¥Þ¥ó¶õ´Ö ·¹ÓÌÚ¾¹Ï¯ Fibre ¶õ´Ö (locally trivial) ¤Î¥¹¥Ú¥¯¥È¥ë·ÏÎó¤Î°ì°ÕÀ ¸ÁÒÀ¾ÀµÉð Pseudogroup structure ¤ÎÊÑ·Á¤Ë¤Ä¤¤¤Æ ¹ÂìÂôÀºÆó Cartan Àܳ¤Î formulation ºº´¡¹ÌÚ½ÅÉ× 3¼¡¸µ Euclid ¶õ´Ö¤Ë¤ª¤±¤ë¶ÊÌÌÏÀ¤Î´ðËÜÄêÍý¤ÎÂç°è²½ 1959(¾¼34) ¿ôÍý²Ê³ØÁí¹ç¸¦µæÈÉ¥·¥ó¥Ý¥¸¥¦¥à¡Ö·²ÏÀ¤ÈʪÍý³Ø1¡×1959 July23-25 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö µÈÂô¾°ÌÀ ²óž·²¤È¥í¡¼¥ì¥ó¥Ä·²¤Îɽ¸½ ÁÒÀ¾ÀµÉð ̵¸Â¥ê¡¼·²¤Ë¤Ä¤¤¤Æ µÜÂô¹°À® ʬ»¶¼°¤È¿ÊÑ¿ôÈ¡¿ôÏÀ ÃæÀ¾ ê÷ ʬ»¶¸ø¼°¤Î¾ÚÌÀ¤ÎÀÝÆ°ÏÀŪÊýË¡ °ì¾¾ ¿® ÀµÂ§Êñ¤Ë´ØÏ¢¤·¤Æ ÃæÌî·°É× ÎÌ»ÒÎϳؤˤª¤±¤ë¾ì¤ÎÍýÏÀ¤Ë´ØÏ¢¤·¤Æ ¹â¶¶Îé»Ê ¥í¡¼¥ì¥ó¥Ä·²¤Îɽ¸½¤ÈµåÈ¡¿ô Âè4²óÀÖÁÒ¥»¥ß¥Ê¡¼ 1959 July 27-Aug.8.3 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö ¿ù±º¸÷É× compact ÂоΥ꡼¥Þ¥ó¶õ´Ö¾å¤ÎµåÈ¡¿ô ¹â¶¶Îé»Ê Lobatchevsky ¶õ´Ö¤ÎÂÓµåÈ¡¿ô ¶ÌÀî¹±É× Â¿¸µÂΤˤª¤±¤ëÎÌ»Øɸ¤Î¦Æ-È¡¿ô µ×²ìƻϺ Selberg ¤ÎÍýÏÀ¤Î¾Ò²ð-¤È¤¯¤Ë G ÉÔÊÑÈùʬºîÍÑÁǤˤĤ¤¤Æ- ¹â¶¶½¨°ì ·²¤ÎÀ°¿ôɽ¸½¤Ë¤Ä¤¤¤Æ ÍÇÏ Å¯ Group variety ¤ÎÆó,»°¤ÎÀ¼Á¤Ë¤Ä¤¤¤Æ °ËÀª´´É× ÂоΥ꡼¥Þ¥ó¶õ´Ö¤Ë¤Ä¤¤¤Æ ´äËÙĹ·Ä Classical groups ¤Î associative algebras ¤Î¼«¸ÊƱ·¿¤Î·²¤È¤·¤Æ¤ÎÄêµÁ¤Ë¤Ä¤¤¤Æ µÈÂô¾°ÌÀ ·²¤Îɽ¸½¤ÈµåÈ¡¿ô¤Ë¤Ä¤¤¤Æ ´äËÙĹ·Ä Homogeneous space ¤ÎÁÐÂÐÄêÍý¤Ë¤Ä¤¤¤Æ ¿ôÍý²Ê³ØÁí¹ç¸¦µæÈÉ¥·¥ó¥Ý¥¸¥¦¥à¡Ö·²ÏÀ¤ÈʪÍý³Ø2¡×1959 Sept.27-28 ÅìµþÂç³Ø¶µÍܳØÉô »³Æⶳɧ ÎÌ»ÒÎϳؤˤª¤±¤ë·²ÏÀ¤ÎÌòÌÜ Â¼°æ¹¯µ× ÈóÀƼ¡¥í¡¼¥ì¥ó¥Ä·² ÁÒÀ¾ÀµÉð ÉÔÊÑÀÑʬ¤Ë¤Ä¤¤¤Æ ĹÌî Àµ Èùʬ²Äǽ¿ÍÍÂξå¤Î³°Èùʬ·Á¼°¤ÎÀÑʬ ËÙ¹¾ µ× Racah algebra ¤Ë¤Ä¤¤¤Æ ´äËÙĹ·Ä ÅļÂÀϺ»á¤ÎÌäÂê¤Ë¤Ä¤¤¤Æ ¿ôÍý²Ê³ØÁí¹ç¸¦µæÈÉ¥·¥ó¥Ý¥¸¥¦¥à¡Ö·²ÏÀ¤ÈʪÍý³Ø3¡×1959 Nov.30-Dec.2 Ç®³¤»ÔÀ²³¤Áñ ¼¾å¿®¸ã °ì¼¡ÊÑ´¹·² GL(n,C) ¤Îɽ¸½ÏÀ ´äËÙĹ·Ä ľ¸ò·²¤È¼Ð¸ò·²¤Îɽ¸½ÏÀ ÃæÀ¾ ê÷ ÂèÆóÎ̻Ҳ½ 1960(¾¼35) Âè5²óÀÖÁÒ¥»¥ß¥Ê¡¼ 1960 July 26-30 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö µÈÂô¾°ÌÀ Automorphic functions ¤È unitary representations º´Éð°ìϺ ÂоΠRiemann ¶õ´Ö¤Îɽ¸½¤È¥³¥ó¥Ñ¥¯¥È²½ ¾¾ÅçÍ¿»° Stein Åù¼Á¶õ´Ö °ì¾¾ ¿® Riemann Ì̤Πmoduli º´Éð°ìϺ p¿ÊÂξå¤ÎµåÈ¡¿ô 1960(¾¼35) Âè5²óÀÖÁÒ¥»¥ß¥Ê¡¼ 1960.July 26-30 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö µÈÂô¾°ÌÀ Automorphic functions ¤È unitary representations º´Éð°ìϺ ÂоΠRiemann ¶õ´Ö¤Îɽ¸½¤È¥³¥ó¥Ñ¥¯¥È²½ ¾¾ÅçÍ¿»° Stein Åù¼Á¶õ´Ö °ì¾¾ ¿® Riemann Ì̤Πmoduli º´Éð°ìϺ p¿ÊÂξå¤ÎµåÈ¡¿ô 1961(¾¼36) (ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à)1961 Jan.5-7 ÅìµþÂç³Ø¶µÍܳØÉô »Ö¼¸ÞϺ Automorphic form ¿ù±º¸÷É× Principal non-degenerate series ÃÝÇ·Æâæû Representation factorielle äÇϿɧ 3-¼¡¸µ¥í¡¼¥ì¥ó¥Ä·²¤Î¾¦¶õ´Ö¤Î¾å¤Ëºî¤é¤ì¤¿É½¸½¤Î´ûÌóʬ²ò (ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à)(1961 Sept.9-11) ÅìµþÂç³ØÍý³ØÉô ¾®¿Ë¤¢¤¹¨ ͶƳɽ¸½¤Ë¤Ä¤¤¤Æ(ȾľÀÑ·¿·²) äÇϿɧ G.W.Mackey ¤Î induced representation ¿ù±º¸÷É× Complex semi-simple group ¤Î representation ¤Î construction µÈÂô¾°ÌÀ Irreducible decomposition I, II º´Éð°ìϺ Automorphic form ÀõÌî ÍÎ Cartier ¤Ë¤è¤ë Weyl ¤Î multiplicity formula ¤Î proof º´Éð°ìϺ µåÈ¡¿ô¤ÎÀ°¿ôÏÀ¤Ø¤Î±þÍÑ(Ramanujan ͽÁÛ) 1962(¾¼37) (ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à)(1962 May 15) ·øÅÄÅìÍÎ˵áÀ§Áñ ¿ù±º¸÷É× G/K ¤ÎµåÈ¡¿ô¤Î·èÄê ÀÞ¸¶ÌÀÉ× Real semi-simple group ¤Îɽ¸½¤Î¹½À® µÈÂô¾°ÌÀ ¡ç-¼¡¸µ¶õ´Ö¤Î measure 1963(¾¼38) Âè5²óÂå¿ô¥·¥ó¥Ý¥¸¥¦¥à ¥¼¡¼¥¿È¡¿ô(1963 Oct 10-11) ÅìµþÂç³Ø ÀÞ¸¶ÌÀÉ× Unitary ɽ¸½¤È Zeta È¡¿ô ²ÏÅķɵÁ ¦ÆÈ¡¿ô½øÏÀ Æ£ºê¸»ÆóϺ 2¼¡·Á¼°¤Î¦ÆÈ¡¿ô º£ÌÆó ¿¸µ´Ä¤Î¦ÆÈ¡¿ô(Godement ¤ÎÍýÏÀ) ÅÚ°æ¸øÆó Âʱߥ⥸¥å¥é¡¼È¡¿ôÂΤȤ½¤Î¥ä¥³¥Ó¿ÍÍÂΤˤĤ¤¤Æ ¶áÆ£ Éð Hasse ¤Î¦ÆÈ¡¿ô¤Èµõ¿ô¾èË¡ ÆüËÜ¿ô³Ø²ñ (1963 Oct) ÅìµþÂç³Ø F.Bruhat p¿ÊÂξå¤ÎÂå¿ô·² 1964(¾¼39) ¥æ¥Ë¥¿¥êɽ¸½¥·¥ó¥Ý¥¸¥¦¥à(1964.March 23-27) ·øÅÄÅìÍÎË·øÅÄÎÀ ÀÄËÜÏÂɧ ¼ÂȾñ½ã Lie ·²¤Îɽ¸½ÏÀ ¹â¶¶Îé»Ê de Sitter group ¤Îɽ¸½ÏÀ ºØÆ£ÀµÉ§ p-adic representation theory ÀÞ¸¶ÌÀÉ× Plancherel formula ´Ý»³¼¢Ìï Discrete subgroup ¤Èɽ¸½ÏÀ(I) ÀÞ¸¶ÌÀÉ× Discrete subgroup ¤Èɽ¸½ÏÀ (II) ÅÚ°æ¸øÆó Hecke ºîÍÑÁÇ¤È trace formula º´Æ£´´É× Åù¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤È zeta È¡¿ô ¥æ¥Ë¥¿¥êɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1964..July6-8)È¢º¬¶¯ÍåÀűÀÁñ À¤ÏÃ¿Í ÀÞ¸¶ÌÀÉ× ÀÞ¸¶ÌÀÉ× SL(2,C) ¤Îɽ¸½¤Î¥Æ¥ó¥½¥ëÀÑ Ã¤ÇϿɧ SL(2,R) ¤Îɽ¸½¤Î¥Æ¥ó¥½¥ëÀÑ Ã¤ÇϿɧ SL(2,R) ¤ÎÁÐÂÐÀ µÜºê ¹À¡¦µÜºê ¸ù¡¦ÀÄËÜÏÂɧ SL(2,R) ¾å¤Î¥Õ¡¼¥ê¥¨ÊÑ´¹ ¿ù±º¸÷É× SL(2,C) ¾å¤Î Paley-Wiener ¤ÎÄêÍý ¹â¶¶Îé»Ê Kunze-Stein ¤ÎÍýÏÀ 1965(¾¼40) (ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à)(1965 Feb.22-24) µþÅÔÂç³ØÍý³ØÉô Ê¿°æ Éð °ìÈÌ¥í¡¼¥ì¥ó¥Ä·²¤Î´ûÌóɽ¸½¤Î»Øɸ¸ø¼°¤È Plancherel ·¿¤ÎÄêÍý ²¬ËÜÀ¶¶¿ Plancherel formula ¤Ë¤Ä¤¤¤Æ¨¡ÆÃ¤Ë de Sitter ·²¤Î¾ì¹ç¨¡ ÀÄËÜÏÂɧ Ⱦñ½ã Lie ·²¤Î double coset ʬ²ò¤È¤½¤Î±þÍÑ ÌÚ²¼ÁÇÉ× ¹ÔÎó´Ä¤Î Zeta È¡¿ô Ê¿¾¾Ë°ì SL(2,R) ¤ÎÉÔϢ³·²¤Ë´Ø¤¹¤ë Weight 1/2 ¤Î Automorphic form ¤Ë¤Ä¤¤¤Æ ÅÄÃæ½Ó°ì¡¦ÀÞ¸¶ÌÀÉ× G/K ¤ÎÀµÂ§É½¸½¤Î¥¹¥Ú¥¯¥È¥ë¤Ë¤Ä¤¤¤Æ ÆüÊÆÈùʬ´ö²¿³Ø¥»¥ß¥Ê¡¼ (1965 June 14-19) µþÅÔÂç³Ø¿ôÍý¸¦(¾¶) Y.Matsushima & S.Murakami On certain cohomology groups attached to hermitian symmetric spsces S.Helgason A duality in integral geometry on symmetric spaces with application to group representations R.Bott A fixed point theorem for elliptic systems B.Kostant Orbits, symplectic structure and representation theory N.Iwahori On reflection groups of non-compact symmetric spaces M.Takeuchi Applications of the theory of Nagano to symmetric spaces M.Kuga Fibred variety over symmetric spaces whose fibres are abelian varieties Âè8²óÂå¿ô¥·¥ó¥Ý¥¸¥¦¥à ÉÔϢ³·²¤ÎÀ°¿ôÏÀ(1965 July 8-11)¶âÂô-»³Âå(¾¶) ÀÄËÜÏÂɧ AIII ·¿¤Î Rank 2 ¤Îñ½ã Lie ·²¤Îɽ¸½ µ×ÊÝÅÄÉÙͺ Picard ·¿ÉÔϢ³·²¤Ë´Ø¤¹¤ëÏÃÂê ÀÞ¸¶ÌÀÉ× Eisenstin µé¿ô¤È¥æ¥Ë¥¿¥êɽ¸½ Æ£ºê¸»ÆóϺ Poisson ¤Îϸø¼°¤Î°ìÈ̲½ (ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à)(1965 Aug.27-30) È¢º¬¶¯ÍåÀűÀÁñ ²¬ËÜÀ¶¶¿¡¦»³¸ý ¶Ç¡¦ÀÞ¸¶ÌÀÉ× Harish-Chandra ¤Î½ôÍýÏÀ¤Î²òÀ⤽¤Î¾ ¿ù±º¸÷É× K¡ÀG ¾å¤Î Plancherel formula ÅÚÀî¿¿É× SL(2,C) ¤Îɽ¸½¤Î¹½À® ¿·Ã«ÂîϺ de Sitter ·²¤Î principal ¤Ç¤Ê¤¤ discrete series ¤Ë¤Ä¤¤¤Æ ÅÄÃæ½Ó°ì¡¦ÀÞ¸¶ÌÀÉ× ÉÔϢ³·²¤ÎϢ³¥¹¥Ú¥¯¥È¥ë¤È trace formula º´Éð°ìϺ Symplectic representation of algebraic groups 1966(¾¼41) ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÄê¾ï²áÄø¡×(1966 Jan 30-Feb 1)(¾¶) µÈÂô¾°ÌÀ¡¦Ã¤ÇϿɧ Geodesic flows on homogeneous spaces ¡ÖºîÍÑÁǴĤȷ²¤Îɽ¸½¡×(1966 Feb.19-22) ÉÙ»³ ½ß von Neumann algebra ¤Î global structure ÃݺêÀµÆ» Èó²Ä´¹ÀÑʬÏÀ¤ÈĴϲòÀÏ ÉÙ»³ ½ß C*-algebra ¤Î dual space ÃݺêÀµÆ» C*-algebra ¤Îɽ¸½¤Î direct integral decomposition ¤ÈÀ®Ê¬¤Î unitary equivalence Ê¿°æ Éð Éé¤ÎÄê¶ÊΨ¶õ´Ö¾å¤Î geodesic flow ¤Ë¤Ä¤¤¤Æ ÀÞ¸¶ÌÀÉ× Hermite ¿¹à¼° ¿ù±º¸÷É× Í¸Â¼¡¸µÉ½¸½¤Î duality äÇϿɧ ¶É½ê¥³¥ó¥Ñ¥¯¥È·²¤ÎÁÐÂÐÄêÍý ÃݺêÀµÆ» C*-algebra ¤Îɽ¸½¤Ë¤ª¤±¤ë duality Âè4²ó Functional Analysis Symposium (1966.July13-14) ¶âÂôÂç³Ø(¾¶) äÇϿɧ Locally Compact Group ¤ÎøÃæ·¿ÁÐÂÐÄêÍý ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖȾñ½ã·²¾å¤Î Fourier ÊÑ´¹¤È¤½¤Î±þÍÑ¡×1966.Aug.22-26 ÀÄËÜÏÂɧ Orispherical ÊÑ´¹¤È´Ø¿ôÊýÄø¼°¤Ë¤ª¤±¤ë¤¤¤¯¤Ä¤«¤ÎÌäÂê ¿¹Ëܸ÷À¸ Radon ÊÑ´¹¤Ë´Ø¤¹¤ë°ìÈÌÏÀ¤È¤½¤Î±þÍÑ ÀÞ¸¶ÌÀÉ× n ¼¡ Lorentz ·²¤Î class1¤Îɽ¸½¤ò n-1 ¼¡ Lorentz ·²¤ËÀ©¸Â¤·¤¿É½¸½¤Îʬ²ò Ê¿°æ Éð °¿¼ï¤Î¼Âñ½ã·²¤Î character ÅÄÃæ½Ó°ì SL(2,K)(K:¶É½ê¥³¥ó¥Ñ¥¯¥ÈÂÎ)¤Î´ûÌó¥æ¥Ë¥¿¥êɽ¸½¤Î¹½À®Ë¡ µ×²ìƻϺ Abel ¿ÍÍÂΤò fiber ¤È¤¹¤ë fiber space ¤Î¦Æ´Ø¿ô Conference in Katata on the theory of partial differential equations and on the theory of complex manifolds, 1966 Sept 18-22(¾¶) K.Okamoto & H.Ozeki On some types of unitary representations ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1966.Nov.10-11) °ËÅì»Ô¸÷É÷³Õ À¤ÏÃ¿Í ºØÆ£ÀµÉ§ ºØÆ£ÀµÉ§ p¿ÊÊ¿Ì̤α¿Æ°·²¤Î¥æ¥Ë¥¿¥êɽ¸½ ²¬ËÜÀ¶¶¿ °¿¤ë¼ï¤Îcohomology space¤Ë¤ª¤±¤ëɽ¸½¤Î¹½À® ¹â¶¶Îé»Ê Moscow Congress¤Ç¤ÎÏÃÂê ¿·Ã«ÂîϺ ÁжÊÌ̾å¤ÎPlancherel¤ÎÄêÍý µÈÂô¾°ÌÀ Hilbert¶õ´Ö¤Î²óž·² 1967(¾¼42) ¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö̵¸Â¼¡¸µ²óž·²¤Î°ÌÁê¤È¤½¤Î±þÍÑ¡×1967 Feb. 25-27 µÈÂô¾°ÌÀ ̵¸Â¼¡¸µ²óž·² ÈôÅÄÉ𹬠½ÅÊ£ Wiener ÀÑʬ¤Î°ìÈ̲½ »³ºêÂÙϺ ̵¸Â¼¡¸µ Laplacian µÈÂô¾°ÌÀ ̵¸Â¼¡¸µ Lie ·²¤Î°ì¤Ä¤Î±þÍÑ(V.Arnold ¤Î¸¦µæ¤Î¾Ò²ð) ÃæÌîèÁÉ× ¾ì¤ÎÍýÏÀ¤Ë¤ª¤±¤ë Gauge ÊÑ´¹·² ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÈó¥³¥ó¥Ñ¥¯¥È·²¤ÎʪÍý¤Ø¤Î±þÍÑ¡×1967 Jun. 11-13 ¹â¶¶Îé»Ê Lorentz µÚ¤Ó de Sitter ·²¤Îɽ¸½ ¿·Ã«ÂîϺ 2¼¡¶ÊÌ̤ˤª¤±¤ë Lorentz ·²¤ÎÀµÂ§É½¸½¤Î´ûÌóɽ¸½¤Ø¤Îʬ²ò ÃæÌîèÁÉס¦±×ÀîÉÒÉ× Kepler problem ÃæÌîèÁÉס¦µµÊ¥ íì Higher spin particle ¤Î Lagrange formalism ¹âÎÓÉðɧ Infinite component ¤ÎÇÈÆ°ÊýÄø¼° Symposium on theory of group representations and some of its applications 1967 July 6-7 µþÅÔÂç³ØÍý³ØÉô R.Godement Introduction to the theory of Langlands S.Tanaka On irreducible representation of binary modular congruence group mod p¦Ë N.Tatsuuma A duality theorem for locally compact groups M.Sugiura Duality theorem for Lie groups and their homogeneous spaces T.Shintani 1968(¾¼43) ¥æ¥Ë¥¿¥êɽ¸½¥·¥ó¥Ý¥¸¥¦¥à(1968.Jan.27-28)µþÅÔÂç³ØÍý³ØÉô À¤ÏÿÍäÇϿɧ ·§¸¶·¼ºî Ê£ÁÇȾñ½ã·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ ¿ù±º¸÷É× "¿ô³Ø"»ï¥æ¥Ë¥¿¥êɽ¸½ÏÀÆý¸¹æ¤Ë¤Ä¤¤¤Æ ¿·Ã«ÂîϺ p¿ÊÂξå¤ÎÆüìÀþ·¿·²¤Î discrete series ¤Ë¤Ä¤¤¤Æ À¶¿åµÁÇ· ¥í¡¼¥ì¥ó¥Ä·²¾å¤Î Paley-Wiener ·¿¤ÎÄêÍý ¿ôÏÀ¾®¥°¥ë¡¼¥×¶¯Í奻¥ß¥Ê¡¼¡ÖÂå¿ô·²¤ÈÊÝ·¿È¡¿ô¡× 1968 June 22-23 º´Éð°ìϺ Abel ¿ÍÍÂΤò fibre ¤È¤¹¤ë fibre ¿ÍÍÂΤΠcompact ²½ ¿¹ÅĹ¯É× Hecke ¿¹à¼°¡¢·²¤Î¥¼¡¼¥¿È¡¿ô¡¢¥Õ¥¡¥¤¥Ð¡¼Â¿ÍÍÂΤιçƱ¥¼¡¼¥¿È¡¿ô¤ÎƱ°ìÀ¤Ë¤Ä¤¤¤Æ Åĺäδ»Î Cohomology of some special tori and its applications ÅÚ°æ¸øÆó Weil ¤ÎÈ¡¿ôÅù¼°¤Ë¤è¤ë Dirichlet µé¿ô¤ÎÆÃħÉÕ¤±¤Î»Å»ö¤Ë´Ø¤¹¤ëÃí°Õ °Ë¸¶¹¯Î´ ɸ¿ô0¤Î correspondence ¤ò½¼Ê¬Âô»³¤â¤ÄÂå¿ô¶ÊÀþ¾å¤Ë¤Ï2³¬ Fuchs ·¿ÈùʬÊýÄø¼°¤Î¡Öcharacteristic class¡×¤¬Â¸ºß¤¹¤ë¤³¤È ´äËÙĹ·Ä ¹çƱÉôʬ·²ÌäÂê¤Ë´Ø¤¹¤ëºÇ¶á¤Î·ë²Ì¤Ë¤Ä¤¤¤Æ ¿ôÍý¸¦¡ÖºîÍÑÁǴĸ¦µæ²ñ¡×(1968 Julu 1-3)(¾¶) äÇϿɧ ·²´Ä¤òÍ¿¤¨¤ë double Hilbert algebra ºØÆ£ÏÂÇ· On a duality for locally compact groups ÃݺêÀµÆ» äÇÏÁÐÂÐÄêÍý¤ÈºîÍÑÁÇ´Ä Âè3²óÈ¡¿ô²òÀϸ¦µæ²ñ 1968 July 20-22 °ñ¾ëÂç³Ø¹©³ØÉô(¾¶) ·§¸¶·¼ºî Ⱦñ½ã·²¾å¤Î Fourier ²òÀÏ(Harish-Chandra ¤ÎÍýÏÀ) ɽ¸½ÏÀ¤È¿ôÏÀ¤È¤Î´ØÏ¢(1968.July28-30) ·øÅÄ ÅìÍÎË·øÅÄÎÀ µ×ÊÝÅÄÉÙͺ Áê¸ßˡ§¤È¥æ¥Ë¥¿¥êɽ¸½ ¿·Ã«ÂîϺ ÊÝ·¿·Á¼°¤Î Fourier Ÿ³«·¸¿ô¤Ë¤Ä¤¤¤Æ ¹â¶¶Îé»Ê SO0(n,1)¤Îɽ¸½¤Ë¤Ä¤¤¤Æ Ê¿°æ Éð Ⱦñ½ã·²¾å¤ÎÉÔÊÑĶȡ¿ô ¾¾Â¼±ÑÇ· Lie ´Ä¤ÎŸ³«´Ä¤Î¾¦ÂÎ 1969(¾¼44) ·²¤Îɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à 1969 Jan 13-15 µþÅÔÂç³ØÍý³ØÉô ¿·Ã«ÂîϺ Two step unipotent group ¤È Symplectic group ¤È¤ÎȾľÀѤΤ¢¤ë¼ï¤Î unitary ɽ¸½ ¿ù±º¸÷É× Tannaka group ¤Î duality Ê¿°æ Éð ñ½ã¥ê¡¼·²¤ÎÉÔÊѸÇÍĶȡ¿ô ÅÚÀî¿¿É× SL(n,C) ¤Îɽ¸½¶õ´Ö¤Î¹½Â¤¤Ë¤Ä¤¤¤Æ ¹â¶¶Îé»Ê °ÂÆ£ðð°ì I.M.Gel'fand and A.A.Kirillov ¤Î Lie ¾¦ÂΤÎÍýÏÀ¤Î¾Ò²ð ËÙÅÄÎÉÇ· W.Schmid ¤Î "Homogeneous complex manifolds and representations of semi-simple Lie group" ¤Î¾Ò²ð ¿ôÍý¸¦¸¦µæ½¸²ñ¡Öº´Æ£¤ÎĶȡ¿ôÏÀ¤È¤½¤Î±þÍÑ¡×1969.Nov. 27-29(¾¶) ²¬ËÜÀ¶¶¿ ɽ¸½ÏÀ¤Ë¤¢¤é¤ï¤ì¤ëĶȡ¿ô 1970(¾¼45) ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1970.Jan.24-26) ÇòÉͲ¹Àô À¤ÏÃ¿Í °ÂÆ£ðð°ì Ê¿°æ Éð Discrete series ¤Îɽ¸½¤È character ÏÆËÜ ¼Â Principal series ¤Î´ûÌóÀ¤Ë¤Ä¤¤¤Æ ²¬ËÜÀ¶¶¿ Principal series ¤Îʬ²ò¤Ë¤Ä¤¤¤Æ ÀîÃæÀëÌÀ The behavior of the spectrum of §¤¡ÀG when §¤varies ´Ý»³¼¢Ìï Holospherical subgroup ¤Î¶¦ÌòÀ¤Ë¤Ä¤¤¤Æ À¶¿åµÁÇ· De Sitter ·²¤ÎÈïʤ·²¾å¤ÎĴϲòÀÏ Êö¼¾¡¹° Kunze-Stein ¤ÎÍýÏÀ ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂå¿ôŪÀ°¿ôÏÀ¤Ë¤ª¤±¤ëºÇ¶á¤Î½ôÌäÂê¡×1970.Jan.27-29(¾¶) ¿·Ã«ÂîϺ Poisson ¤Îϸø¼°¤Î°ì¤Ä¤ÎÎà»÷ ÅÄÃæ½Ó°ì Theta distribution ¤«¤éƳ¤«¤ì¤ë¥¢¥Ç¡¼¥ë·²¾å¤ÎÊÝ·¿·Á¼°¤Ë¤Ä¤¤¤Æ 1971(¾¼46) ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1971 Feb 13-15) ÄŻԸæžìÁñ À¤ÏÿÍÅÚÀîâÃÉ× ¿·²° ¶Ñ °ìÈÌÀþ·¿°ÌÁê¶õ´Ö¤Ë¤ª¤±¤ëµåÈ¡¿ô ¼ò°æ¹¬µÈ Nilpotent Lie ·²¤Ë´Ø¤¹¤ë Kirillov ͽÁۤˤĤ¤¤Æ ËÙÅÄÎÉÇ· ¼ÂȾñ½ã·²¤ÎÎ¥»¶·ÏÎóɽ¸½¤Î¹½À® ÏÆËÜ ¼Â Polarization ¤Ë¤Ä¤¤¤Æ ²¬ËÜÀ¶¶¿ Gelfand-Graev ¤Î¤¢¤ëÉÔÃí°Õ¤Ê Remark ¤Ë¤Ä¤¤¤Æ ̶ÅÄÍΰì L2(P¡ÀG/K) ¤Îʬ²ò:spectra ¤Î¤¢¤ë¹ÔÆ°¤Ë¤Ä¤¤¤Æ ¹¾¸ýÀµ¹¸ Âоζõ´Ö¾å¤ÎµÞ¸º¾¯È¡¿ô¤Î Radon ÊÑ´¹ »°Ä»Àî¼÷°ì °ìÈÌ Lorentz ·²¾å¤ÎÇ®ÊýÄø¼°¤Ë¤Ä¤¤¤Æ ºØÆ£ÀµÉ§ Sp(2n,k),(k:self-dual) ¤Îɽ¸½¤Î°ìÈÌŪ¤Ê¹½À® ¿ù±º¸÷É× ÆüËÜ¿ô³Ø²ñ 1971 April ÅìµþÅÔΩÂç³Ø ÆÃÊÌ¹Ö±é ¿·Ã«ÂîϺ ³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤Î¥¼¡¼¥¿È¡¿ô(Âå¿ô³Ø¡¦°ÌÁê¿ô³Ø) ¿ôÍý¸¦¸¦µæ½¸²ñ¡Öɽ¸½ÏÀ¤ÈÂç°è²òÀϳء×1971.June 22-24 ËÙÅÄÎÉÇ· A report on realizations of the discrete series ÆñÇÈ À¿ Maximal famillies of compact complex manifolds M.S.Narasimhan On discrete series ¶¶ÄÞƻɧ¡¦²¬ËÜÀ¶¶¿ An example of Lefschetz fixed point theorem for non-compact case Çð¸¶Àµ¼ù Applications of hyperfunctions to unitary representations ¿·Ã«ÂîϺ Zeta functions associated with prehomogeneous vector spaces º´Æ£´´É× GLn ¤Î¥¼¡¼¥¿È¡¿ô ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖOperaro algebra ¤È¤½¤Î±þÍÑ¡×(1971 Aug 9-11)(¾¶) äÇϿɧ Plancherel measure is the Haar measure on dual object À°¿ôÏÀÆüÊÆ¥»¥ß¥Ê¡¼ 1971 Aug 30-Sept 4 Åý·×¿ôÍý¸¦µæ½ê H.Jaquet, ¿·Ã«ÂîϺÅù ¸¦µæ½¸²ñ¡Ö¥·¥ó¥×¥ì¥¯¥Æ¥£¥Ã¥¯Â¿ÍÍÂΡ×1971 Sept ¹ÅçÂç³Ø Èø´Ø±Ñ¼ù Dirac operator D ¤È ¢ß ËÙÅÄÎÉÇ· discrete series ¤Î¼Â¸½ ÏÆËÜ ¼Â Ⱦñ½ã Lie´Ä¤Î polarization ÃÝÆâ ¾¡ µåÈ¡¿ô¤Ë¤Ä¤¤¤Æ ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂоζõ´Ö¤ÈÊÝ·¿´Ø¿ô¡×1971 Nov 10-13 À¶¿å±ÑÃËÂåɽ »°ÂðÉÒ¹±,°Ë¸¶¿®°ìϺ,º´Éð°ìϺ,ÅÚÊý¹°ÌÀ,ÀîÃæÀëÌÀ,»°Âð¹îºÈ,ÃÝÆâ´îº´Íº, ¿¹ÅĹ¯É× ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÅù¼Á¶õ´Ö¾å¤Î²òÀϳء×1971.Dec 1-3²¬ËÜÀ¶¶¿Âåɽ ÅÚÀî¿¿É× Lorentz ·²¤Îɽ¸½¤Î intertwining operator ¤Ë¤Ä¤¤¤Æ ²¬ËÜÀ¶¶¿ Ä´Ï·Á¼°¤Î¥Ý¥¢¥½¥óɽ¼¨¤Ë¤Ä¤¤¤Æ ²Ï¹çδ͵ ¥³¥Û¥â¥í¥¸¡¼·²¤Î͸ÂÀ¤Ë¤Ä¤¤¤Æ¤Î´ðËܸ¶Íý Ê¿°æ Éð Ⱦñ½ã¥ê¡¼·²¾å¤ÎÉÔÊѸÇÍĶȡ¿ô º´Æ£´´É× Â¿ÍÍÂξå¤Î²òÀϳؤˤĤ¤¤Æ¤Î¼ã´³¤Î¹Í»¡ Çð¸¶Àµ¼ù ²¬ËÜͽÁۤˤĤ¤¤Æ 1972(¾¼47) ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1972.Feb.5-7 ) ¾ëºê²¹Àô À¤ÏÃ¿Í ²¬ËÜÀ¶¶¿ ÀÄËÜÏÂɧ Weyler ¤ÎÍýÏÀ¤Ë¤Ä¤¤¤Æ ÀîÃæÀëÌÀ ͸ Chevalley ·²¤Î´ûÌó»Øɸ¤Ë¤Ä¤¤¤Æ ¹¾¸ýÀµ¹¸ Âоζõ´Ö¾å¤ÎµÞ¸º¾¯´Ø¿ô¤Î Fourier ÊÑ´¹ ̶ÅÄÍΰì Schwartz space ¾å¤Î positive definite distribution¤Ë¤Ä¤¤¤Æ »°Ä»Àî¼÷°ì Cusp ¶õ´Ö¤Î trace form ¤Ë¤Ä¤¤¤Æ äÇϿɧ Èó¥æ¥Ë¥â¥¸¥å¥é¡¼·²¤Î Plancherel Formula ¿ù±º¸÷É× Í¸Â¼¡¸µ¤Î¥¯¥é¥¹1ɽ¸½¤Î·èÄê ³ª¹¾¹¬Çî ·² Diff(S1) ¤Î´ûÌó¥æ¥Ë¥¿¥êɽ¸½¤Ë¤Ä¤¤¤Æ ÃÝÃæÌÐÉ× È¡¿ô¶õ´Ö¤Î¡ÖÂ礤µ¡×¤È ¦Å-¥¨¥ó¥È¥í¥Ô¡¼ ¡ÖGlobal Analysis¡×¥·¥ó¥Ý¥¸¥¦¥à 1972 March 27-30 ·øÅÄ À¤ÏÿͰËÀª´´(¾¶) ²¬ËÜÀ¶¶¿ ¥Ù¥¯¥È¥ë¥Ð¥ó¥É¥ëÃÍÄ´Ï·¿¼°¤ËÂФ¹¤ë¥Ý¥¢¥Ã¥½¥óÀÑʬ¤Ë¤Ä¤¤¤Æ ÃÓÅÄ ¾Ï ´ú¿ÍÍÂξå¤Î¢ß-ºîÍÑÁÇ¤È Dirac ºîÍÑÁǤδط¸¤Ë¤Ä¤¤¤Æ ÆüËÜ¿ô³Ø²ñ 1972 April ·ÄØæµÁ½ÎÂç³Ø ÆÃÊֱ̹é ÀîÃæÀëÌÀ ͸ Chevalley ·²¤Î´ûÌó»Øɸ¤Ë¤Ä¤¤¤Æ(Âå¿ô³Ø) Âè11²ó¼ÂÈ¡¿ôÏÀ¡¦Âè10²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1972.July12-14) ¿·³ãÂç³Ø(¾¶) äÇϿɧ Plancherel formula for non-unimodular locally compact groups ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1972.Sept.5-7 ) ±üÆü¸÷ À¤ÏÃ¿Í ´Ý»³¼¢Ìï ºØÆ£ÀµÉ§ ¥â¥¸¥å¥é¡¼·²¤Îɽ¸½ ÅÚÊý¹°ÌÀ p ¿Ê¿¸µÂΤΥæ¥Ë¥¿¥êɽ¸½ ÌÚ¼ãÉ× ´ûÌ󳵶ѼÁ¥Ù¥¯¥È¥ë¶õ´Ö¤ÎʬÎà ËãÀ¸ÂÙ¹° H.Furustenberg:Boundaries of Lie groups and discrete subgroups¤òÃæ¿´¤È¤·¤Æ ÌÚȨÆƹ§ ¥é¥×¥é¥·¥¢¥ó¤Î¸ÇÍ´Ø¿ô¤ÎÀÑʬɽ¼¨¤Ë¤Ä¤¤¤Æ(¥æ¡¼¥¯¥ê¥Ã¥É¶õ´Ö¤Î¾ì¹ç) ¶¶ÄÞƻɧ ¥é¥×¥é¥·¥¢¥ó¤Î¸ÇÍ´Ø¿ô¤ÎÀÑʬɽ¼¨¤Ë¤Ä¤¤¤Æ(°ìÈ̤ÎÂоζõ´Ö¤Î¾ì¹ç) °ÂÆ£ðð°ì¡¦ÅÚÀî¿¿É× Zelobenko:Functions on semisimple Lie groups II (Iz.'69) ¤Î¾Ò²ð 1973(¾¼48) ¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö¥æ¥Ë¥¿¥êɽ¸½¤È¤½¤Î±þÍÑ¡×1973.March24-28 ¼ò°æ¹¬µÈ ·²¤Î Amenability ¤Èɽ¸½ÏÀ ºØÆ£ÀµÉ§ ·²¤Î¤¢¤ë¼ï¤ÎÉôʬ·²¤Èñ¹à¥æ¥Ë¥¿¥êɽ¸½ ¹¾¸ýÀµ¹¸ Harmonic analysis on some type semisimple Lie group ±ºÀî È¥ ¥Ù¥¯¥È¥ëÃͥݥ¢¥Ã¥½¥óÀÑʬ¤ÈÄ´ÏÂ¥»¥¯¥·¥ç¥ó ÌÚȨÆƹ§ Ʊ¼¡Ä´Ï¿¹à¼°¤È Borel-Weil ¤ÎÄêÍý Êö¼¾¡¹° ¼ÂÁжʷ¿¶õ´Ö¾å¤Î Laplacian ¤Î¸ÇÍ´Ø¿ô¤Î¥Ý¥¢¥Ã¥½¥óÀÑʬɽ¼¨ ÀîÃæÀëÌÀ ͸ Chevalley ·²¤Î´ûÌóɽ¸½,´ûÌó»Øɸ¤Ë¤Ä¤¤¤Æ ̶ÅÄÍÎ°ì °ìÈÌ Lorentz ·²¾å¤ÎĴϲòÀÏ ÊÆ»³½Ó¾¼ Limits of discrete series for the Lorentz groups ³ª¹¾¹¬Çî Formal vector fields¤ÎLie´Ä¤Îcohomology¤Ë¤Ä¤¤¤Æ ²¼Â¼¹¨¾´ ²óž·²¤Î¾å¤Î Haar measure ¤Ë¤Ä¤¤¤Æ ÀîÀ¾·¼°ì De Sitter ·²¤Î°ìÍÍͳ¦É½¸½ ÆüËÜ¿ô³Ø²ñ 1973 April Ω¶µÂç³Ø ÆÃÊֱ̹é Ê¿°æ Éð Ⱦñ½ã¥ê¡¼·²¤Î̵¸Â¼¡¸µÉ½¸½¤È»Øɸ¤ÎÍýÏÀ(È¡¿ô²òÀϳØ) ¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡ÖÅù¼Á¶õ´Ö¤Ë¤ª¤±¤ëĴϲòÀÏ¡× 1973.June 22-29 ËãÀ¸ÂÙ¹°Âåɽ ËãÀ¸ÂÙ¹° Poisson ɽ¸½¤È compactification ËãÀ¸ÂÙ¹° Rigidity theorem ·´ ÉÒ¾¼ ÌîËܵ×Éס¦ÃÝÃæÌÐÉ× ÅÚÀî¿¿É× »°¾å½Ó²ð Âè12²ó¼ÂÈ¡¿ôÏÀ¡¦Âè11²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1973.July16-18) ¶å½£¹©¶ÈÂç³Ø (¾¶) ¹¾¸ýÀµ¹¸ Ⱦñ½ã¥ê¡¼·²¤ª¤è¤Ó¤½¤ÎÅù¼Á¶õ´Ö¾å¤Î¥Õ¡¼¥ê¥¨ÊÑ´¹¤ÎÍýÏÀ ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶȡ¿ô¤ÈÀþ·¿ÈùʬÊýÄø¼°II¡×1973 Sept 10-13(¾¶) Êö¼¾¡¹° ¥é¥ó¥¯1¤ÎÂоζõ´Ö¾å¤Î¥é¥×¥é¥·¥¢¥ó¤Î¸ÇÍÈ¡¿ô ÆüËÜ¿ô³Ø²ñ 1973 Oct ²¬»³Âç³Ø ÆÃÊÌ¹Ö±é ²¬ËÜÀ¶¶¿ Âоζõ´Ö¾å¤ÎĴϲòÀÏ(È¡¿ô²òÀϳØ) Âå¿ô·²¥»¥ß¥Ê¡¼ 1973 Nov 23-26 Åìµþ¶µ°éÂ绳Ã渦½¤½ê ÌÚ¼ãͺ¡¢ÀîÃæÀëÌÀÅù 1974 (¾¼49) ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1974.Feb. )Ë̶彣»Ô¤á¤«¤ê»³Áñ À¤Ïÿͻ³¸ý ¶Ç ±ºÀî È¥ ¥³¥ó¥Ñ¥¯¥È Lie ·²¾å¤Î heat equation ÏÆËÜ ¼Â SU(2,1) ¤ÎͶƳɽ¸½¤Î´ûÌóÀ ¶¶ÄÞƻɧ Subquotient theorem for SU(2,1) ²¬ËÜÀ¶¶¿¡¦°æ¾å Æ©¡¦ÅÄÃæ À¿ Paley-Wiener ÄêÍý¤Î±þÍÑ ËÙÅÄÎÉÇ· Discrete series ¤Î multiplicity formula¤Ë¤Ä¤¤¤Æ »°Ä»Àî¼÷°ì Î¥»¶·ÏÎó¤Îɽ¸½¤ÈÈó¥æ¥Ë¥¿¥ê¼ç·ÏÎó ¿ù±º¸÷É× Î¥»¶·ÏÎó¤Î»Øɸ¤Î·×»» °ÂÆ£ðð°ì ľÀþ¤Î°ì¼¡ÊÑ´¹·²¤ËÂФ¹¤ë Paley-Wiener theorem »°¾å½Ó²ð Ê£ÁǸÅŵ·²¤ÎÊä·ÏÎó¤Îɽ¸½¤Ë¤Ä¤¤¤Æ ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶȡ¿ô¤ÈÀþ·¿ÈùʬÊýÄø¼°III¡×1974 Feb 4-7(¾¶) Çð¸¶Àµ¼ù Theory of differential equations with regular-singularity and eigenfunctions of Laplacian of symmetric spaces ²¬ËÜÀ¶¶¿¡¦Êö¼¾¡¹° Âоζõ´Ö¾å¤Î¶³¦ÃÍÌäÂê¤Ë¤Ä¤¤¤Æ ËÙÅÄÎÉÇ· Discrete series ¤È¤¢¤ë¼ï¤ÎÂʱ߷¿ºîÍÑÁÇ ÆüËÜ¿ô³Ø²ñ 1974 April ÅìµþÂç³Ø Áí¹ç¹Ö±é º´Éð°ìϺ Infinitesimal automorphisms of symmetric domains ÆÃÊÌ¹Ö±é ¿·Ã«ÂîϺ ³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤Î¥¼¡¼¥¿È¡¿ô(Âå¿ô³Ø) Âè13²ó¼Â´Ø¿ôÏÀÂè12²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1974.7/11-13) Ë̳¤Æ»Âç³Ø (¾¶) ¼ò°æ¹¬µÈ Amenable transformation semigroup ¤Ë¤Ä¤¤¤Æ ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂоζõ´Ö¾å¤ÎÉÔÊÑÈùʬÊýÄø¼°¡×1974July22-24 ²¬ËÜÀ¶¶¿ Âоζõ´Ö¾å¤Î¶³¦ÃÍÌäÂê ÂçÅçÍøͺ Âоζõ´Ö¤Ë¤ª¤±¤ë¶³¦ÃÍÌäÂê¤Ë¤Ä¤¤¤Æ ²¬ËÜÀ¶¶¿¡¦ÌÚȨÆƹ§¡¦ÅÄÃæ À¿ Intertwining operator ¤ÎĶ¶É½êÀ¤Ë¤Ä¤¤¤Æ Çð¸¶Àµ¼ù Intertwining operator ¤È¶ËÂç²á¾ê·èÄê·Ï¤Ë¤Ä¤¤¤Æ º´Æ£´´É× Miclo-local calculus ÀÄËÜÏÂɧ µåÈ¡¿ô¤ÎÊ£ÁÇÈ¡¿ôÏÀŪ¼è°·¤¤ Êö¼¾¡¹°¡¦ÅÄÃæ À¿¡¦²¬ËÜÀ¶¶¿ ¥é¥ó¥¯1¤ÎÂоζõ´Ö¾å¤Î¥Ç¥£¥ê¥¯¥ìÌäÂê ÃÝÃæÌÐÉ× functional dimension ¤Ë¤Ä¤¤¤Æ »°Ä»Àî¼÷°ì Real rank1¤ÎȾñ½ã¥ê¡¼·²¤Ë´Ø¤¹¤ë¤¢¤ë·ÏÎó¤Î´ûÌóɽ¸½¤Ë¤Ä¤¤¤Æ ±ºÀî È¥ Èó¥³¥ó¥Ñ¥¯¥È·¿Âоζõ´Ö¾å¤Î Laplacian ¤ÎÊ£ÁǶҤˤĤ¤¤Æ ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1974 ) Â绳¤·¤í¤¬¤ÍÁñ À¤ÏÿÍËãÀ¸ÂÙ¹° ³ª¹¾¹¬Çî Cohomology of Lie algebras of vector fields with coefficients in adjoint representations ¶¶ÄÞƻɧ Whittaker Model ¤Ë¤Ä¤¤¤Æ Æ£¸¶±ÑÆÁ ²Ä²ò¥ê¡¼·²¤Î¥æ¥Ë¥¿¥êɽ¸½ÏÀ Æ£¸¶±ÑÆÁ exponential group ¤Î unitary ɽ¸½ ¸Åë¸Ï¯ ¼Â Banach ´Ä¤ËÂФ¹¤ë Arens-Royden ¤ÎÄêÍý ·§¸¶·¼ºî Cartan ±¿Æ°·²¾å¤Î Fourier ÊÑ´¹ ¹â¶¶Îé»Ê Schmid ¤Î»Å»ö¤Î¾Ò²ð ËãÀ¸ÂÙ¹° Litvinov ¤Î»Å»ö¤Ë¤Ä¤¤¤Æ 1975(¾¼50) ¿ôÍý¸¦Ã»´ü¶¦Æ±¡ÖÅù¼Á¶õ´Ö¤Ë¤ª¤±¤ëĴϲòÀÏ(II)¡×1975.March17-21 ËãÀ¸ÂÙ¹° Åù¼Á¶õ´Ö¾å¤Î³ÎΨ¾ì¤Îɽ¸½¤Ë¤Ä¤¤¤Æ Ê¿°æ Éð È¡¿ô¤È¤·¤Æ¤ÎÉÔÊѸÇÍĶȡ¿ô ¤È¤¯¤ËÎ¥»¶·ÏÎó¤Îɽ¸½¤Î»Øɸ¸ø¼° Æ£¸¶±ÑÆÁ ²Ä²ò¥ê¡¼·²¤Î¥æ¥Ë¥¿¥êɽ¸½ÏÀ ÂçƦÀ¸ÅIJí°ì ¼ç·ÏÎóɽ¸½¤Î´ûÌóÀ¤Ë¤Ä¤¤¤Æ Êö¼¾¡¹° Âоζõ´Ö¾å¤Î¸ÇÍÈ¡¿ô¤Î¶³¦ÃͤÈÀÑʬɽ¼¨ äÇϿɧ Àµµ¬Éôʬ·²¤ËÂФ¹¤ëÁÐÂÐÀ ÆüËÜ¿ô³Ø²ñ 1975 April ÂçºåÂç³Ø ÆÃÊֱ̹é Êö¼¾¡¹° HelgasonͽÁۤȳÎÄêÆðÛÅÀ·¿ÈùʬÊýÄø¼°(È¡¿ô²òÀϳØ) ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶȡ¿ô¤ÈÀþ·¿ÈùʬÊýÄø¼°IV¡×1975 April 4-10(¾¶) Êö¼¾¡¹° Âоζõ´Ö¾å¤ÎÉÔÊÑÈùʬºîÍÑÁǤÎƱ»þ¸ÇÍÈ¡¿ô ÂçÅçÍøͺ ³ÎÄêÆðÛÅÀ·¿¶³¦ÃÍÌäÂê¤Ë¤Ä¤¤¤Æ ÆüÊÆ¥»¥ß¥Ê¡¼¡ÖÊÝ·¿·Á¼°¤ÎÀ°¿ôÏÀ¤Ø¤Î±þÍÑ¡× S.Lang, µ×ÊÝÅÄÉÙͺ, L.J.Goldstein, ¿¥Åŧ¹¬, K.-Y.Shih, S.Gelbart, ºØƣ͵, H.Jaquet, ¿·Ã«ÂîϺ, D.Niebur, »³ËÜ˧ɧ, E.Lippa, ÅÚÊý¹°ÌÀ, O.Atkin, ÂÀÅIJíÈþ, °Ë¸¶¹¯Î´, A.Pizer, µÈÅÄ·ÉÇ·, M.Razar, ¾®ÃÓÀµÉ×, K.A.Ribet, J.Coates, »Ö¼¸ÞϺ Âè14²ó¼Â´Ø¿ôÏÀÂè13²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1975.7/15-17) Ä»¼èÂç³Ø(¾¶) »°Ä»Àî¼÷°ì ÈùʬÊýÄø¼°¤È´ûÌóɽ¸½¤Ë¤Ä¤¤¤Æ ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂå¿ô²òÀϤνôÌäÂê¡×(1975 July 29-Aug 1)(¾¶) ´Ø¸ý¼¡Ïº SL(3,R) ¤ÎÂÓµåÈ¡¿ô¤Ë¤Ä¤¤¤Æ ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1975 Oct.6- ) ¿·Êæ¹â²¹Àô À¤ÏÿÍÃÝÃæÌÐÉס¦±ºÀîÈ¥ ÃÝÃæÌÐÉ× À¶¿å±ÑÉ× Some examples of new forms ÌÚȨÆƹ§ Intertwining operators and differential equations Æ£¸¶±ÑÆÁ On the unitary representations of split solvable Lie groups ²¼Â¼Ä¾µ× Cuspidal characters over finite classical groups »°Ä»Àî¼÷°ì On a multiplicity formula G.Schiffmann Distribution invariant under the orhtogonal group G.Schiffmann Weil's representation --- the anisotropic case ¶¶ÄÞƻɧ On Whittaker model ÂçƦÀ¸ÅIJí°ì On a Paley-Wiener type theorem of de Sitter group ´Ø¸ý¼¡Ïº On the zonal spherical function on SL(3,R) Ê¿°æ Éð On characters and invariant eigen-distributions ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÈùʬÊýÄø¼°¤ÈĶȡ¿ô¡×1975 Dec 17-20(¾¶) ÌðÌî ´Ä¡¦´Ø¸ý¼¡Ïº Coxeter groups ¤ËÉտ魯¤ë weighted homogeneous polynomial ¤Î micro-local structure (with Appendix on GL(2)) ÂçÅçÍøͺ Âоζõ´Ö¾å¤Î¼ï¡¹¤Î¶³¦¤ËÂФ¹¤ë¶³¦ÃÍÌäÂê 1976(¾¼51) ¿ôÍý¸¦¸¦µæ½¸²ñ¡Öɽ¸½ÏÀ¤Èintertwining operator¡×1976.Feb.16-19(¿ù±º¸÷É×Âåɽ) ̶ÅÄÍΰì De Sitter ·²¾å¤Î Fourier ²òÀϤÈÀ׸ø¼° G.Schiffmann Intertwining operator and Weil representation ¶¶ÄÞƻɧ Sp(n) ¤Î Whittaker model Êö¼¾¡¹° ¥Ý¥¢¥½¥óÀÑʬ¤ÈÈùʬÊýÄø¼° ¼ò°æ¹¬µÈ Amenable °ÌÁê·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ Ê¿°æ Éð Ⱦñ½ã Lie ´Ä¤Î»Øɸ¤Ë¤Ä¤¤¤Æ ¿·Ã«ÂîϺ ɽ¸½¤Î¤â¤Á¤¢¤²¤Ë¤Ä¤¤¤Æ ÀîÃæÀëÌÀ ͸ÂÂξå¤Î¥æ¥Ë¥¿¥ê·²¤ÎÊ£ÁÇ´ûÌó»Øɸ¤Ë¤Ä¤¤¤Æ äÇϿɧ Åù¼Á¶õ´Ö¤ËÂФ¹¤ëøÃæ·¿ÁÐÂÐÄêÍý ÂçƦÀ¸ÅIJí°ì Spin(4,1)¾å¤ÎµåÈ¡¿ô¤ÎŸ³«¤Ë¤Ä¤¤¤Æ Æ£¸¶±ÑÆÁ Exponential group ¤Î holomorphically induced representation ¤Ë¤Ä¤¤¤Æ »°Ä»Àî¼÷°ì Ãö¼í ع Translation invariant operator in Lp ÆüËÜ¿ô³Ø²ñ 1976 April ¶å½£Âç³Ø ÆÃÊֱ̹é G.Schiffmann Weil's representation attached to a quadratic form(È¡¿ô²òÀϳØ) Âè15²ó¼ÂÈ¡¿ôÏÀ¡¦Âè14²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1981July12-14) ÀéÍÕÂç³Ø (¾¶) ²¼Â¼¹¨¾´ Quasi-invariant measures on R¡ç ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1976 Oct 8-11) ÂçÍεù¶È¹¾¥ÎÅ縦½¤¥»¥ó¥¿¡¼ À¤ÏÃ¿Í Êö¼¾¡¹° ÃÝÃæÌÐÉ× ÀÄÌÚ ÌÐ ²¼»°³Ñ unipotent ·²¤Î Paley-Wiener ·¿ÄêÍý¤Ë¤Ä¤¤¤Æ »°¾å½Ó²ð ¹¾¸ýÀµ¹¸ ¥¢¥¤¥¼¥ó¥·¥å¥¿¥¤¥óÀÑʬ¤ÎÁ²¶á¹ÔÆ°¤ÈÂоζõ´Ö¾å¤Î¥Õ¡¼¥ê¥¨ÊÑ´¹ ¾¾Ëܽ¤°ì Hyperboloid ¾å¤Î Laplacian ¤Î¸ÇÍÃÍÌäÂê¤Ë¤Ä¤¤¤Æ ÂçƦÀ¸ÅIJí°ì De Sitter ·²¤ÎµåÈ¡¿ô¤Ë¤Ä¤¤¤Æ ÊÆ»³½Ó¾¼ Invariant operators on a group of triangular matrices ¶¶ÄÞƻɧ ɽ¸½¤ËÉտ路¤¿ Zeta È¡¿ô¤Ë¤Ä¤¤¤Æ ¾¾°æ À¶ ͸ÂÂå¿ô·²¤Î Green polynomial ¤Ë¤Ä¤¤¤Æ ËÙÅÄÎÉÇ· ͸ÂÂå¿ô·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ(Deligne-Lusztig ¤Î»Å»ö¤Î¾Ò²ð) ºØÆ£ÀµÉ§ non-standard analysis ÆüËÜ¿ô³Ø²ñ 1976 Oct Åìµþ¹©¶ÈÂç³Ø ÆÃÊֱ̹é Æ£¸¶±ÑÆÁ Exponential group ¤Î¥æ¥Ë¥¿¥êɽ¸½¤Ë¤Ä¤¤¤Æ ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶȡ¿ô¤ÈÀþ·¿ÈùʬÊýÄø¼° V¡×1976 Oct 13-16(¾¶) ÂçÅçÍøͺ¡¦´Ø¸ý¼¡Ïº Harmonic analysis on affine symmetric spaces ÂçÅçÍøͺ A realization of Riemannian symmetric spaces 1977(¾¼52) ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖIndefinite inner product space ¾å¤Ø¤Î amenable group ¤Îɽ¸½¡×(1977 Feb.22-25) ¼ò°æ¹¬µÈÂåɽ ÂÀÅľº°ì ¼ò°æ¹¬µÈ Unitary representation of amenable group in Krein spaces ÅÚÀî¿¿É× ËãÀ¸ÂÙ¹° Ìî¼δ¾¼ SU(1,1) ¤Î͸ÂÈïʤ·²¾å¤Ç¤Î Paley-Wiener ·¿ÄêÍý äÇϿɧ Compact group ¤Î unitary representation (²òÀâ) ¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö»Øɸ¤ÈÉÔÊѸÇÍĶȡ¿ô¡×(1977 March 15-17) ºØÆ£ÀµÉ§Âåɽ º´Ìî ÌÐ Æüì¤ÊȾñ½ã¥ê¡¼·²¤Î Plancherel ¸ø¼° À¶¿åµÁÇ· ¼ÂȾñ½ã Lie ·²¤Îɽ¸½¤È»Øɸ¤Ë¤Ä¤¤¤Æ ËÙÅÄÎÉÇ· Schmid ¤Î»Øɸ¤Î´Ø·¸¼°¤Ë¤Ä¤¤¤Æ ÂçÅçÍøͺ¡¦´Ø¸ý¼¡Ïº Affine symmetric space ¤Ë¤ª¤±¤ë¶³¦ÃÍÌäÂê Ê¿°æ Éð Î¥»¶·ÏÎó¤Îɽ¸½¤È»Øɸ äÇϿɧ ÉÔÊÑ¥Ù¥¯¥È¥ë¤ò¤â¤ÄÊÄÉôʬ·² ¹¾¸ýÀµ¹¸ Åù¼Á¶õ´Ö¾å¤ÎÈùʬÊýÄø¼°¤Ë¤Ä¤¤¤Æ ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶ¶É½ê²òÀÏ¡×(1977 Apr 8-11)(¾¶) ÂçÅçÍøͺ¡¦´Ø¸ý¼¡Ïº Âоζõ´Ö¾å¤Î¼ï¡¹¤ÎÆüì¸ÇÍÈ¡¿ô¤Ë¤Ä¤¤¤Æ ÆüËÜ¿ô³Ø²ñ 1977 Oct ÅìµþÍý²ÊÂç³Ø ÆÃÊֱ̹é ËÙÅÄÎÉÇ· ͸ÂÂξå¤Î Chevalley ·²¤Î Green ¿¹à¼°¤È Weyl ·²¤Îɽ¸½(Âå¿ô³Ø) ¶¶ÄÞƻɧ Reductive Lie ·²¤Îɽ¸½¤Î Whittaker model ¤Ë¤Ä¤¤¤Æ(È¡¿ô²òÀϳØ) ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1977.Oct.13-17)»°½ÅÂç³Ø À¤Ïÿͳª¹¾¹¬Çî Ìî¼δ¾¼ SU(1,1) ¤Î͸ÂÈïʤ·²¾å¤Ç¤Î Paley-Wiener ·¿ÄêÍý º´Ìî ÌÐ Sp(2,R)¤Î Plancherel formula »°Ä»Àî¼÷°ì Harish-Chandra ¤Î Plancherel formula¤Ë¤Ä¤¤¤Æ ÃÓÅÄ ¾Ï¡¦Ã«¸ý ¥³¥ó¥Ñ¥¯¥ÈÂоζõ´Ö¾å¤Î¥é¥×¥é¥·¥¢¥ó¤Î¸ÇÍÃÍÌäÂê ËãÀ¸ÂÙ¹° Special representation ¤Î¼Â¸½ ÈôÅÄÉ𹬠²¹¸ÎÃο· ¥Ö¥é¥¦¥ó±¿Æ°¤ò¤á¤°¤Ã¤Æ ̶ÅÄÍΰì SU(n,1)¤ËÂФ¹¤ë Flensted-Jensen ¤Î spherical functions ¤Ë¤Ä¤¤¤Æ ¾¾ÌÚÉÒɧ The orbits of affine symmetric spaces under the action of minimal parabolic subgroups ´¢»³ÏÂ½Ó Chevalley ·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ 1978(¾¼53) ÆüËÜ¿ô³Ø²ñ 1978 April ̾¸Å²°Âç³Ø ÆÃÊֱ̹é ÂçƦÀ¸ÅIJí°ì µåÈ¡¿ô¤Î Harish-Chandra Ÿ³«¤Ë¤Ä¤¤¤Æ(È¡¿ô²òÀϳØ) ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶȡ¿ô¤ÈÀþ·¿ÈùʬÊýÄø¼° VI¡×1977 June 5-8(¾¶) ÂçÅçÍøͺ Âоζõ´Ö¾å¤ÎÉÔÊÑÈùʬºîÍÑÁǤΥ¹¥Ú¥¯¥È¥ë Âè16²ó¼ÂÈ¡¿ôÏÀ¡¦Âè15²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1983July17-19) Å纬Âç³Ø (¾¶) ºØÆ£ÀµÉ§ non-standard analysis ¤È¤Ï²¿¤« ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1978.Oct.12-14)²»¸Í¤ÎÀ¥¸Í À¤ÏÿÍËÙÅÄÎÉÇ· »°¾å½Ó²ð Ê¿°æ¤Î»Øɸ¸ø¼°¤Îñ½ã²½ µÈÅÄ·ÉÇ· Æ󼡷Á¼°¤È Siegel modular form »³¸ý ¶Ç ²Ä²ò¥ê¡¼·²¤Î Affine ¹½Â¤¤Ë¤Ä¤¤¤Æ ÅÚÀî¿¿É× Plancherel formula ¤Èɽ¸½¤Î¥Æ¥ó¥½¥ëÀѤÎʬ²ñ ²ÃÆ£¿®°ì p¿ÊÂξå¤ÎÂå¿ô·²¤Î spherical principal series ¤Ë¤Ä¤¤¤Æ ¶¶ÄÞƻɧ Selberg trace formula ¤Ë¤Ä¤¤¤Æ Ìî¼δ¾¼ ¤¢¤ëÉáÊ×Èïʤ·²¾å¤Ç¤Î Paley-Wiener ·¿ÄêÍý ÅÚ°æ±ÑÉ× ¤¢¤ë¼ï¤Î Lie ·²¤Î Weil ɽ¸½¤Ë¤Ä¤¤¤Æ 1979(¾¼54) ¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½¤ÈĴϲòÀÏ¡×1979.Aug.27-30 (¿ù±º¸÷É×Âåɽ) °æ¾å Æ© ͳ¦ÂоÎÎΰè¤Î³Æ¶³¦¤ËÉտ魯¤ë¥æ¥Ë¥¿¥êɽ¸½¤È³Ë´Ø¿ô ¶¶ÄÞƻɧ ºÇ¹â¥¦¥¨¥¤¥È¤ò»ý¤Äɽ¸½¤Î¥Û¥¤¥¿¥Ã¥«¡¼¥â¥Ç¥ë Êö¼¾¡¹° Spherical sections of a homogeneous vector bundle ÌÚȨÆƹ§¡¦ÅÄÃæ À¿ ¥¢¥Õ¥£¥óÂоζõ´Ö¾å¤Î pseudo-laplacian ¤ÎÂç°èŪ ²Ä²òÀ¤Ë¤Ä¤¤¤Æ ¾¾Ëܽ¤°ì ¥¢¥Õ¥£¥óÂоζõ´Ö¾å¤ÎÀµÂ§É½¸½¤Ë¸½¤ì¤ëÎ¥»¶¥¹¥Ú¥¯¥È¥ë ÏÆËÜ ¼Â ¥³¥ó¥Ñ¥¯¥È¥ê¡¼¥Þ¥ó¶õ´Ö¾å¤Î Schrodinger ÊýÄø¼°¤Î´ðËܲò¤Ë¤Ä¤¤¤Æ ̶ÅÄÍÎ°ì ¤¢¤ë¼ï¤Îñ½ã Lie ·²¾å¤Î1¼¡¸µ¤Î K-type ¤ò»ý¤Äµå´Ø¿ô¤È Paley-Wiener ·¿ÄêÍý ²Ïź ·ò Rank1 ¤ÊȾñ½ã Lie ·²¾å¤Î Paley-Wiener ·¿¤ÎÄêÍý À¾Â¼½ÓÇ· ¸Ç͵åÈ¡¿ô¤ÎÁ²¶áŪµóÆ°¤È Lp(1¡åp<¡ç)²ÄÀÑʬÀ ÂçƦÀ¸ÅIJí°ì SO0(n,1)¾å¤ÎµåÈ¡¿ô¤Ë¿ïȼ¤¹¤ë Harish-Chandra µé¿ô¤ÎÀÑʬɽ¼¨¤Ë¤Ä¤¤¤Æ ÅÚÀî¿¿É× É½¸½¤Î¥Æ¥ó¥½¥ëÀÑ¤È Plancherel formula ¤Ë¤Ä¤¤¤Æ º´Ìî ÌÐ The Plancherel formula for Sp(n,R) »°Ä»Àî¼÷°ì Compact Lie ·²¤Î¥Æ¥ó¥½¥ëÀÑɽ¸½¤Ë¤Ä¤¤¤Æ ¾¾ËÜÌмù SL(2,F)¾å¤ÎÉÔÊÑĶ´Ø¿ô¤ÎüÅÀʬ²ò¤Ë¤Ä¤¤¤Æ ¿·²° ¶Ñ On a decomposability of homogeneous linear system representations of a locally compact group ÇßÅÄ µü L¡ç(G)¾å¤Î°ÜÆ°¤È²Ä´¹¤Ê isometry ¤Ë¤Ä¤¤¤Æ ²Ï¾å ů Mautner ·²¤Î´ûÌóɽ¸½¤Ë¤Ä¤¤¤Æ ¼ò°æ¹¬µÈ °ÌÁê·²¤Î§±n¶õ´Ö¤Ø¤Î untary ɽ¸½¤ÎÆÃÀ´Ø¿ô¤Ë¤Ä¤¤¤Æ ÆüËÜ¿ô³Ø²ñ 1979 Oct µþÅÔÂç³Ø ÆÃÊÌ¹Ö±é ²¼Â¼¹¨¾´ ̵¸Â¼¡¸µ¶õ´Ö¤ÎÊ¿¹Ô°ÜÆ°½àÉÔÊѬÅ٤ˤĤ¤¤Æ(È¡¿ô²òÀϳØ) ÆüÊ©¥·¥ó¥Ý¥¸¥¦¥à 1979 Oct.8-14 Strasbourg Âç³Ø J.-L.Clerc Transformee de Fourier spherique des espaces de Schwartz M.Hashizume Whittacker models for representations with highest weights H.Rubenthaler Espaces vectoriels prehomogenes, sous groupes paraboliques et sl2-triplets T.Shintani On automorphic forms on a unitary group of order 3 Guillemonat Une extension de la bande critique M.Mamiuda An integral representation of the Harish-Chandra series associated with spherical functions on SO0(n,1) J.Y.Charbonnel Formule de Plancherel pour les groupes resolubles connexes M.Flensted-Jensen L1 boundary values Y.Muta On the spherical functions with one dimensional K-type and the Paley-Wiener type theorem on some simple Lie groups H.Leptin On the structure of L1-algebras M.Eguchi On the Fourier transform for Riemannian symmetric spaces and Cp spaces M.Cowling On complementary series M.Kashiwara K-types and asymptotic expansions M.Duflo Differential operators on symmetric spaces H.Yoshida Weil's representations and Siegel's modular forms M.Khalgui Representations des groups de Lie a radial cocompact H.Matsumoto Espaces riemanniens isotropes et leurs analogues discrets H.Midorikawa On a Clebsh-Gordan coefficient of a certain tensor product representation H.Saito On a decomposition of spaces of cusp forms and trace formula of Hecke operators D.Wigner Lobatchefskii function and cohomology of SL(2) at Paris VII N.Tatsuuma Duality for factor spaces ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖStructure and representations of algebraic group¡×1979.Oct.30 F.Bruhat Reductive groups on a local field and group schemes K.Shinoda On Weil representatopn of Sp2n(Fq) T.Shoji On the Springer representations of Chevalley groups of type Al, Bl, Cl, Dl, F S.Matsumoto Orbital decomposition of invariant distributions of SL(2,K) S.Kato On eigenspaces of a Hecke algebra with respect to a good maximal compact subgroup of a p-adic reductive group T.Tanisaki Inheritance of some invariant properties under foldings of algebraic groups N.Iwahori¡¦K.Koike Some generalizations and spplications of Kostant's partition functions ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1979.Nov.26-29)Åò²Ï¸¶²¹ÀôÉßÅç´Û À¤ÏÿÍÀ¶¿åµÁÇ· ¼À¥ ÆÆ Àþ·¿Âå¿ô·²¤Î°ìÍÍʬÉۤˤĤ¤¤Æ ´Ø¸ý¼¡Ïº ¥¢¥Õ¥£¥óÂоζõ´Ö¾å¤ÎÉÔÊѸÇͶõ´Ö¤Ë¤Ä¤¤¤Æ ÀÄÌÚ ÌÐ SL(2,R)¤ÎÉáÊ×Èïʤ·²¾å¤Î Paley-Wiener ¤ÎÄêÍý ²Ïź ·ò SU(2,2)¾å¤Î Paley-Wiener ¤ÎÄêÍý ²Ï¾å ů ¤¢¤ë°ø»Òɽ¸½¤Îʬ²ò¤Ë¤Ä¤¤¤Æ ·óÅÄ ¶Ñ Poincare ·²¤Î´ûÌóɽ¸½¤«¤é·è¤Þ¤ë Poincare Ⱦ·²¤Î²ÄÌóÀ¤Ë¤Ä¤¤¤Æ ¶¶ÄÞƻɧ ¥Û¥¤¥¿¥Ã¥«¡¼´Ø¿ô¤ÎËþ¤¿¤¹ÈùʬÊýÄø¼° ¾¾Ëܽ¤°ì ¥¢¥Õ¥£¥óÂоζõ´Ö¾å¤ÎÀµÂ§É½¸½¤Ë¸½¤ì¤ëÎ¥»¶¥¹¥Ú¥¯¥È¥ë ·§¸¶·¼ºî ¥³¥ó¥Ñ¥¯¥ÈÅù¼Á¶õ´Ö¾å¤Î Fourier ÊÑ´¹¤ÈÉÔÊÑÈùʬºîÍÑÁǤδðËܲò ³ª¹¾¹¬Çî ¤¢¤ë¼ï¤Î¥Ù¥¯¥È¥ë¾ì¤Î Lie ´Ä¤È¤½¤Î cohomology ËÙÅÄÎÉÇ· Weyl ·²¤Îɽ¸½ º´Æ£Ç½¹Ô ¤¢¤ë¼ï¤ÎÎ¥»¶·²¤Î̵¸Â¼¡¸µ¥æ¥Ë¥¿¥êɽ¸½ 1980(¾¼55) ÆüËÜ¿ô³Ø²ñ 1980 April ÆÃÊÌ¹Ö±é ¹¾¸ýÀµ¹¸ ÂоΥ꡼¥Þ¥ó¶õ´Ö¾å¤Î¥Õ¡¼¥ê¥¨²òÀÏ¡½ºÇ¶á¤ÎȯŸ¡½ (È¡¿ô²òÀϳØ) ²¬ËÜÀ¶¶¿ ²ÄÈùʬ¿ÍÍÂξå¤ÎĴϲòÀÏ(´ö²¿³Ø) ¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö¥ê¡¼´Ä¡¦Âå¿ô·²¤È¤½¤Î¼þÊÕ¡×(1980 May 29-June 2)(¾¶) ¾®ÃÓÏÂɧ Kac-Moody Lie ´Ä¤È Macdonald type ¤Î¹±Åù¼° ¿¹ÅÄ ½ã Kac ¤Î Graph ɽ¸½ÏÀ¤Î¾Ò²ð Root ¤Î¸øÍý·Ï¤Ë¤Ä¤¤¤Æ ëºê½ÓÇ· ¥°¥é¥Õ¤Îɽ¸½ÏÀ¤Ë¤ª¤±¤ë Kac ¤Î·ë²Ì¤Î¾Ò²ð ´Ø¸ý¼¡Ïº¡¦À¶¿åÊݹ° Subregular-singularities in a symmetric space Âè19²ó¼Â´Ø¿ôÏÀÂè18²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1980.Jul 3-5) Ê¡²¬Âç³Ø(¾¶) ·§¸¶·¼ºî Ⱦñ½ã Lie ·²¤Î Riemann-Lebesgue ¤ÎÊäÂê ÆüËÜ¿ô³Ø²ñ 1980 Oct °¦É²Âç³Ø ÆÃÊÌ¹Ö±é ¸åÆ£¼éË® ¥ê¡¼·²¤Î¶ËÂç¥È¡¼¥é¥¹¤ò¤á¤°¤Ã¤Æ(´ö²¿³Ø) ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à (1980.Oct.5-8)Ä»¼è»ÔÇòÅƲñ´Û À¤Ïÿͷ§¸¶·¼ºî ¾¾Ëܽ¤°ì Discrete series for an affine symmetric space ÂçÅçÍøͺ Ⱦñ½ãÂоζõ´Ö¾å¤ÎĴϲòÀÏ ÀÄÌÚ ÌРϢ³¼ç·ÏÎóɽ¸½¤Î¥Æ¥ó¥½¥ëÀѤˤĤ¤¤Æ º£ÌîÂÙ»Ò discrete series ¤Î multiplicity formula ¤Ë¤Ä¤¤¤Æ¡½Spin(2m,1),SU(n,1)¤Î¾ì¹ç¡½¡½ Ê¿°æ Éð unipotent orbital integral ¤Ë¤Ä¤¤¤Æ ³á¸¶ µ£ ²Ä²ò¥ê¡¼·²¤Î¥æ¥Ë¥¿¥êɽ¸½ Æ£¸¶±ÑÆÁ ²Ä²ò·²¤Ë¤ª¤±¤ë intertwining operator ¤È¤½¤Î±þÍÑ ·óÅÄ ¶Ñ Poincare ·²¤Î´ûÌóɽ¸½¤Î Poincare Ⱦ·²¤Ë´Ø¤¹¤ë²ÄÌóÀ »³ÅÄ͵»Ë Relative invariants of prehomogeneous vactor spaces and the realization of certain unitary representations »°Ä»Àî¼÷°ì Âоζõ´Ö¾å¤Î Hardy class ¤Ë¤Ä¤¤¤Æ Harmonic Analysis on Semisimple Symmetric Spaces (1980. Nov.10 -13) ¿¦¶È·±ÎýÂç³Ø¹» À¤ÏÿÍÂçÅçÍøͺ An Introduction to Harmonic Analysis on Semisimple Symmetric Spaces ÂçÅçÍøͺ ½ø,³ÎÄêÆðÛÅÀ·¿¤ÎÈùʬÊýÄø¼° ´Ø¸ý¼¡Ïº ¥ë¡¼¥È·Ï,¥ê¡¼·²¤Î¹½Â¤ ¾¾ÌÚÉÒɧ ·²¤Îʬ²òÄêÍý ÂçÅçÍøͺ(´Ø¸ý¼¡Ïº) Âоζõ´Ö¤Î¼Â¸½¡¢¼ç·ÏÎóɽ¸½ ´Ø¸ý¼¡Ïº Poisson ³Ë,¸ÇÍ´Ø¿ô¤ÎÀÑʬɽ¼¨ ÂçÅçÍøͺ Î¥»¶·ÏÎóɽ¸½ ´Ø¸ý¼¡Ïº c-functions ÂçÅçÍøͺ Fourier ÊÑ´¹¡¦Plancherel ¤ÎÄêÍý Related Topics »°¾å½Ó²ð ¤¢¤ëÎ¥»¶·ÏÎó¤Î»Øɸ »³ÅÄ͵»Ë ³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤ÎÁêÂÐÉÔÊѼ°¤È¤¢¤ë¥æ¥Ë¥¿¥êɽ¸½¤Î¼Â¸½ Çð¸¶Àµ¼ù Kazhdan-Lustig Conjecture ¾¾Ëܽ¤°ì Flensted-Jensen ¤ÎÏÀʸ(Discrete series for semisimple symmetric spaces)¤Î¾Ò²ð ²Ïź ·ò ´ûÌó¤Êɽ¸½¤Î»Øɸ¤Ë´Ø¤¹¤ë Atiyah ¤Î lecture note ¤Î¾Ò²ð¤È symmetric space ¤Ø¤Î±þÍÑ Êö¼¾¡¹° G/K¾å¤Î vector bundle ¤Ø¤Î Poisson ÊÑ´¹ 1981(¾¼56) ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÅù¼Á¶õ´Ö¾å¤ÎĴϲòÀÏ¡×1981.Feb.19-21(¹¾¸ýÀµ¹¸Âåɽ) °æ¾å Æ© ͳ¦Åù¼ÁÎΰè¤ÎÀµÂ§´Ø¿ô¤«¤é¤Ê¤ë¥Ò¥ë¥Ù¥ë¥È¶õ´Ö¤È¤½¤Î¾å¤Ø¤Îľ¸ò¼Í±Æ ¶¶ÄÞƻɧ ¥Û¥¤¥¿¥Ã¥«¡¼´Ø¿ô¤È¸ÍÅÄ³Ê»Ò Ý¯°æ¹§½Ó ̵¸Â¼¡¸µ²óž·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ Êö¼¾¡¹° Åù¼Á¥Ù¥¯¥È¥ë«¾å¤ÎÉÔÊÑÈùʬºîÍÑÁÇ ÂçƦÀ¸ÅIJí°ì Lorentz ·²¾å¤Î C-´Ø¿ô ·§¸¶·¼ºî Âоζõ´Ö¾å¤Î Lp ²òÀÏI ¹¾¸ýÀµ¹¸ Âоζõ´Ö¾å¤Î Lp ²òÀÏII ²Ïź ·ò ¼Â rank1¤ÊȾñ½ã Lie ·²¾å¤Î Lp Fourier ²òÀÏ Ìî¼δ¾¼ Oscillator ·²¤Î Paley-Wiener ·¿ÄêÍý ÅÚÀî¿¿É× SL(2,k)¤Îɽ¸½¤Î¥Æ¥ó¥½¥ëÀÑII ÆüËÜ¿ô³Ø²ñ 1981 April µþÅÔÂç³Ø ÆÃÊֱ̹é äÇϿɧ ¾¦¶õ´Ö¾å¤ÎøÃæ·¿ÁÐÂÐÄêÍý(È¡¿ô²òÀϳØ) Âè20²ó¼Â´Ø¿ôÏÀÂè19²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1981.July16-18) ÉÙ»³Âç³Ø (¾¶) ²Ïź ·ò Ⱦñ½ã¥ê¡¼·²¾å¤Ç¤Î¥Õ¡¼¥ê¥¨²òÀÏ ÌÚȨÆƹ§ Ⱦñ½ãÂоζõ´Ö¾å¤ÎÉÔÊÑÀÑʬ¤Ë¤Ä¤¤¤Æ ¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö¥¢¥Õ¥¡¥¤¥óÂоζõ´Ö¾å¤ÎĴϲòÀÏ¡×1981.July20-23(ÂçÅçÍøͺÂåɽ) ³á¸¶ µ£ ÈóI·¿·²¤Î Plancherel ¸ø¼°¤Ë¤Ä¤¤¤Æ ²Ï¾å ů ¤¢¤ëC*-ÀܹçÀѤÎɽ¸½¤Îʬ²ò¤Ë¤Ä¤¤¤Æ ÌÚȨÆƹ§ Ⱦñ½ãÂоζõ´Ö¾å¤Îµ°Æ»ÀÑʬ¤Ë¤Ä¤¤¤Æ º´Ìî ÌÐ GL(n,C)/GL(n,R)¾å¤ÎÉÔÊÑÂÓµåĶ´Ø¿ô¤È Plancherel ¸ø¼° ¾¾ÌÚÉÒɧ Ⱦñ½ãÂоζõ´Ö¤ÎÎ¥»¶·ÏÎóɽ¸½ »°Ä»Àî¼÷°ì ²ÄÌó¤Ê¼ç·ÏÎóɽ¸½¤Ë¤Ä¤¤¤Æ ²£»³Ã¤¼£ ±ºÀî È¥ ¶É½êÂоζõ´Ö¾å¤Î¥é¥×¥é¥·¥¢¥ó¤Î¸ÇÍÃÍÌäÂê¤Ë¤Ä¤¤¤Æ ÂçÅçÍøͺ Âоζõ´Ö¤Î¼ï¡¹¤Î¶³¦¤ÎÂФ¹¤ë¶³¦ÃÍÌäÂê ´Ø¸ý¼¡Ïº Invariant eigendistributions and nilpotent orbits Çð¸¶Àµ¼ù ɽ¸½ÏÀ¤Ë¤ª¤±¤ëÈùʬÊýÄø¼° ËÙÅÄÎÉÇ· Weyl ·²¤Îɽ¸½II ¸åÆ£¼éË® ͸¼¡¸µÉ½¸½¤Î͸ÂÉôʬ¤È¤½¤Î±þÍÑ Ì¶ÅÄÍÎ°ì ¥Ý¥¢¥ó¥«¥ì·²¾å¤Î¥Õ¡¼¥ê¥¨ÊÑ´¹¤Ë¤Ä¤¤¤Æ ¹â¶¶Îé»Ê SU(2)¤Î Clebsch-Gordan ·¸¿ô¤Ë´Ø¤¹¤ë combinatorial relation¤Ë¤Ä¤¤¤Æ ¡ÖȾñ½ã¥ê¡¼·²¤Îɽ¸½¤ÈĴϲòÀϡץµ¥Þ¡¼¥»¥ß¥Ê¡¼(1981.Aug.3-6)¿¦¶È·±ÎýÂç³Ø¹» Êö¼¾¡¹° Åù¼Á¥Ù¥¯¥È¥ë«¤Ë¤ª¤±¤ëÉÔÊÑÈùʬºîÍÑÁǤδĤι½Â¤ º´Ìî ÌРȾñ½ã·²¤Ë¤ª¤±¤ëWeyl¤ÎÀÑʬ¸ø¼°¤È Harish-Chandra ÊÑ´¹¤Ë¤Ä¤¤¤Æ ÂçƦÀ¸ÅIJí°ì ¼ç·ÏÎóɽ¸½¤Î infinitesimal operators º´Æ£ Ǧ Unipotent variety ¤Î¶³¦¤Ë¤Ä¤¤¤Æ ²ÃÆ£Ëö¹ SU(n,1)¤ÎÊÝ·¿·Á¼°¤Î¼¡¸µ¸ø¼°¤Ë¤Ä¤¤¤Æ ÆüËÜ¿ô³Ø²ñ 1981 Oct »³¸ýÂç³Ø ÆÃÊֱ̹é ÏÆËÜ ¼Â Gauge ·²¤Î unitary ɽ¸½(È¡¿ô²òÀϳØ) ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1981.Oct.10-11)¼¯»ùÅçÂç³Ø¶µÍÜÉô À¤Ïÿͼò°æ¹¬µÈ ÅÚ°æ±ÑÉ× Kac-Moody Lie ´Ä¤Î Verma modules ¤Ë¤Ä¤¤¤Æ Çð¸¶Àµ¼ù Ⱦñ½ã¥ê-·²¤Îɽ¸½ÏÀ¤ÈÀþ·¿ÊÐÈùʬÊýÄø¼°·Ï(I,II) ÀÄÌÚ ÌÐ SU(2,n) ¤ÎÈïʤ·²¾å¤Ç¤Î Payley-Wiener ·¿¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ »Þ¾¾ ¹§ ¥³¥ó¥Ñ¥¯¥È·²(Lie ·²¤È¤Ï¸Â¤é¤Ì)¾å¤Î differential calculus ËãÀ¸ÂÙ¹° Action of simple groups on affine building and related topics ¿ù±º¸÷É× È¾Ã±½ã¥ê¡¼·²¤ÎøÃæÁÐÂÐÄêÍý ÅÚÀî¿¿É× SL2(k) ɽ¸½¤Î¥Æ¥ó¥½¥ëÀÑ(²ÄÌó¤Ê¼ç·ÏÎóɽ¸½¤Î¾ì¹ç) ¾¾ËÜÌмù GLn(k) ¾å¤ÎÉÔÊÑĶ´Ø¿ô¤Ë¤Ä¤¤¤Æ ´¢»³ÏÂ½Ó ¸Åŵ·²¤Î Coxeter Îà¤ËÉտ路¤¿¥È¡¼¥é¥¹¤Ë¤Ä¤¤¤Æ 1982(¾¼57) Âå¿ô¥»¥ß¥Ê¡¼¡Ö¥³¥Û¥â¥í¥¸¡¼¤Èɽ¸½ÏÀ¡×(1982 Aug 9-11)¾ëºê²¹Àô ·Ë ÍøÇ· Derived category ¤È Verdier duality ëºê½ÓÇ·¡¦ËÙÅÄÎÉÇ· Intersection cohomology ¤È holonomic system ëºê½ÓÇ· Ê£ÁÇȾñ½ã Lie ´Ä¤Îɽ¸½ÏÀ¤ÈD-²Ã·²¤ÎÍýÏÀ ²ÃÆ£¿®°ì¡¦ËÙÅÄÎÉÇ· Springer ɽ¸½¤È¤½¤Î¼þÊÕ ËÙÅÄÎÉÇ· The Weyl group as monodromies and nilpotent orbits ¡½ after M.Kashiwara Àõ°æ¾ÈÌÀ Deligne-Lusztig ¿¹à¼°¤Î Zeta È¡¿ô¤Ë¤Ä¤¤¤Æ ɽ¸½ÏÀÀçÂ楷¥ó¥Ý¥¸¥¦¥à(1982.March29) ÅìËÌÂç³ØÍý³ØÉô Æ£¸¶±ÑÆÁ ¶¶ÄÞƻɧ Whittaker functions on semisimple Lie groups ËÙÅÄÎÉÇ·¡¦Ã«ºê½ÓÇ· Some topics related to nilpotent orbits ¾¾ÌÚÉÒɧ¡¦ÂçÅçÍøͺ Discrete series for affine symmetric spaces M.Duflo Construction of a set of irreducible unitary representations of real algebraic Lie groups, sufficiently big to decompose L2(G) ÆüËÜ¿ô³Ø²ñ 1982 March ¹Ô¼ÔÌÀɧ ͸¤ª¤è¤Ó p- ¿Ê Chevalley ·²¤Î Hecke ´Ä¤ËÉտ路¤¿ Poincare µé¿ô¤È¤½¤Î°ìÈ̲½(Âå¿ô³Ø) M.Duflo On a conjecture of Michele Vergne on the Poisson-Plancherel formula: the case of complex Lie groups(È¡¿ô²òÀϳØ) Âè21²ó¼Â´Ø¿ôÏÀÂè20²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1982.July15-17) ´ØÀ¾Ã϶èÂç³Ø¥»¥ß¥Ê¡¼ ¥Ï¥¦¥¹ (¾¶) ¾¾ÌÚÉÒɧ Ⱦñ½ãÂоζõ´Ö¾å¤ÎÎ¥»¶·ÏÎóɽ¸½¤Ë¤Ä¤¤¤Æ ¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½¤ÈÈó²Ä´¹Ä´Ï²òÀÏ¡×1982.July20-23(¿·²°¶ÑÂåɽ) ÇßÅÄ µü Sp(m,R)¤ÎÉáÊ×Èïʤ·²¤Îɽ¸½¤È¿ÊÑ¿ô Bessel È¡¿ô »³ÅÄ͵»Ë Shilov ¶³¦¾å¤Î¥Ù¥¯¥È¥ëÃÍÈ¡¿ô¤È Weil ɽ¸½ ´¢»³Ï½ӡ¦ÅÚ°æ±ÑÉ× p-¿Ê Chevalley ·²¤Î¶ËÂç K-¥È¡¼¥é¥¹¤Î¤¢¤ë¶¦ÌòÎà¤Ë¤Ä¤¤¤Æ ¼ã»³Àµ¿Í SU(n,1) (n¡æ2)¤Î compact ¾¦¶õ´Ö¤Ë¤ª¤±¤ë Selberg ·¿ zeta ´Ø¿ô »Þ¾¾ ¹§ ¥³¥ó¥Ñ¥¯¥È·²¾å¤Î²ÄÈùʬ´Ø¿ô ²ÃÆ£Ëö¹ SU(n,1)¤ÎÊÝ·¿·Á¼°¤Î¼¡¸µ¸ø¼°¤Ë¤Ä¤¤¤Æ ÂçƦÀ¸ÅIJí°ì Schrodinger ÊýÄø¼°¤Î¸ÇͲò¤È·²¤Îɽ¸½ ²Ïź ·ò Lie ·²¾å¤ÎÁíÏÂË¡ äÇϿɧ (ax+b)·²¤Î Chevalley-¿ù±º·¿Ê£ÁDz½ ¶¶ÄÞƻɧ ³¬¿ô1Èó¥³¥ó¥Ñ¥¯¥ÈÂоζõ´Ö¾å¤ÎĴϲòÀϤȤ½¤Î±þÍÑ Ý¯°æ¹§½Ó ̵¸Â¼¡¸µ¥æ¥Ë¥¿¥ê·²¤Î Peter-Weyl ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ ɽ¸½ÏÀ¥µ¥Þ¡¼¥»¥ß¥Ê¡¼(1982.Aug20-23)ÂçÄ®»Ô À¤ÏÿͲÏź·ò¡¦Ä»°æ¿·¿Í ±ºÀî È¥ ͸¶À±Ç·²¤È¥é¥×¥é¥·¥¢¥ó¤Î¶³¦ÃÍÌäÂê ¡½¡½ 4¼¡¸µ°Ê¾å¤ÎÂÀ¸Ý¤Î·Á¤ò ²»¤ÇÄ°¤Ê¬¤±¤ë¤³¤È¤Ï¤Ç¤¤Ê¤¤¡½¡½ ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1982.Nov.17-19) ²Ï¸ý¸Ð ÉٻκùÁñ ¼ã»³ Àµ¿Í Real rank 1¤ÎȾñ½ã Lie ·²¤Î compact ¾¦¶õ´Ö¤Ë¤ª¤±¤ë Selberg zeta ´Ø¿ô¤Î½ôÀ¼Á¤È¤½¤Î±þÍѤˤĤ¤¤Æ ´Ø¸ý¼¡Ïº Invariant measures on orbits associated to a symmetric pair ³á¸¶ µ£ Heisenberg ·¿·²¤Îɽ¸½ÏÀ ·óÅÄ ¶Ñ ISU(n) ¤ÎÉÔÊÑ¿¹à¼°´Ä °ËÆ£ÀµÇ· Poisson ¶õ´Ö ¤È discrete ·²¾å¤Î convolution ÊýÄø¼° ¿ù±º¸÷É× Âè°ì¼ï¥ë¡¼¥È·Ï¤È Cartan subalgebra ¤Î¶¦ÌòÎà »°Ä»Àî¼÷°ì Sp(n,Z) ¤ÎÂʱ߸µ¤Î¶¦ÌòÎà¤Ë¤Ä¤¤¤Æ ËãÀ¸ÂÙ¹° SU(3.f) ¤Îɽ¸½¤Ë¤Ä¤¤¤Æ ¹¾¸ýÀµ¹¸ Reductive Lie ·²¾å¤Î Eisenstein ÀÑʬ¤ÎÁ²¶áŸ³«¤Ë¤Ä¤¤¤Æ ·§¸¶·¼ºî Riemann Âоζõ´Ö¾å¤Î¤Î Fourier ÊÑ´¹¤ËÂФ¹¤ëHardy-Littlewood-Paley ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ ²Ïź ·ò J.Arthur ¤Î»Å»ö¤Î¾Ò²ð¡½¡½Paley-Wiener ·¿¤ÎÄêÍý¤Î²ò·è 1983(¾¼58) ¿ôÍý¸¦¸¦µæ½¸²ñ 1983.Feb22-26(¾¶) Ê¿°æ É𠲬ËÜ¡¦ºù°æ¤Î O(¡ç),U(¡ç) ¤Î Peter-Weyl ¤ÎÄêÍý¤Î¾Ò²ð ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÎϳطϤȥ꡼·²¤Îɽ¸½ÏÀ¡×1983.June20-22 (²¬ËÜÀ¶¶¿Âåɽ) °æ°ËÀ¶Î´¡¦ÅÏÊÕ¿°ì Âоζõ´Ö¾å¤Î geodesic flow ¤Î´°Á´ÀÑʬ²ÄǽÀ ÅÄÃæÍÎÊ¿ Kac-Moody group(Kac-Peterson ¤Î»Å»ö¤Î¾Ò²ð) ÏÆËÜ ¼Â Basic representations of exteded affine Lie algebras B.Kostant Gauss-Kummer formula ¾¾Ëܵ׵Á Ⱦñ½ãÂоζõ´Ö¤Î spherical K-type ¤Î¤¢¤ë¼ï¤Î¶ñÂÎŪɽ¼¨¤Ë¤Ä¤¤¤Æ Ìî¼δ¾¼ A description of a space of holomorphic discrete series by means of the Fourier transform on the Shilov boundary ²Ïź ·ò Atoms and molecules on Riemannian symmetric spaces ¹¾¸ýÀµ¹¸ On the asymptotic behavior of the generalized spherical functions on semisimple Lie groups Floyd L. Williams Some new results on L2(§¤¡ÀG) multiplicities ëºê½ÓÇ· ´ú¿ÍÍÂξå¤Î holonomic system ¤Î characteristic cycle ¤È Weyl ·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ ²ÃÆ£¿®°ì On the Kazhdan-Lusztig polynomials for affine Weyl groups Âè22²ó¼Â´Ø¿ôÏÀÂè21²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1983.July22-24) ´ä¼êÂç³Ø (¾¶) ²Ï¾å ů ÈóI·¿É½¸½¤Î´ûÌóʬ²ò¤Ë¤Ä¤¤¤Æ ÆüËÜ¿ô³Ø²ñ 1983 Sept Áá°ðÅÄÂç³Ø ÆÃÊÌ¹Ö±é ·§¸¶·¼ºî Riemann Âоζõ´Ö¾å¤Î Lp È¡¿ô¤Îµå Fourier ÊÑ´¹¤Ë¤Ä¤¤¤Æ(È¡¿ô²òÀϳØ) ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1983.Nov.16-19)»³Ãæ²¹Àô¤Û¤¯¤ê¤¯Áñ À¤Ïÿͻ°¾å½Ó²ð À¾»³ µý Tensoring method for semisimple groups ¿¥Åŧ¹¬ Automorphic forms, L-functions, and periods integrals ÏÆËÜ ¼Â¡¦»³ÅÄ͵»Ë Irreducible decompositions of Fock representations of the Virasoro algebra ÃÝËܵÁÉ× ¥Ù¥Îí¥ê¡¼´Ä¤ÎʬÎà ³á¸¶ µ£ C*ͶƳɽ¸½¤Ë¤è¤ë¼«Í³·²¤Îɽ¸½ ´Ø¸ý¼¡Ïº Remarks on involutions on a root system ̶ÅÄÍΰì Lorentz ·²¤È Euclid Fourier ÊÑ´¹ ÂçƦÀ¸ÅIJí°ì SL(2,R)¾å¤Î conical distributions ¹¾¸ýÀµ¹¸ SU(1,1)¾å¤Î Paley-Wiener ·¿ÄêÍý¤È Campoli¤Î¾ò·ï Æ£¸¶±ÑÆÁ ¸¦µæ½¸²ñ¡Öɽ¸½ÏÀ¡× 1983 Nov.25- µþÂçÍý³ØÉô ÍÌÚ ¿Ê¡¦»ûÅÄ »ê ¥Ù¥Îí¡¦²Ä²ò Lie ·²¤Î´ûÌó¥æ¥Ë¥¿¥êɽ¸½ »°ÎØůÆ󡦿ÀÊÝÆ»É× ¥¢¥Õ¥£¥ó¥ê¡¼´Ä¤Îɽ¸½¤Îʬ´ô§¤ËÂФ¹¤ëÁÐÂÐÀ¤Ë¤Ä¤¤¤Æ ¿¹ÅÄ ½ã Áжʷ¿ Kac-Moody ¥ê¡¼´Ä Simons ·²¤Îɽ¸½¤ÈÈóÀþ·ÁÊýÄø¼° ¿ùÂô¡¦ÆÁ»³ ´ö²¿³ØŪÎ̻Ҳ½ µÈÅÄ °ì°Õ²½ ²¬ËÜÀ¶¶¿ Einstein-Maxwell ÊýÄø¼°¤Î solution ¤Î¶õ´Ö¤Ë Kac-Moody Lie ·²¤¬ transitive ¤ËºîÍѤ¹¤ë Ê¿°æ Éð ¥ê¡¼·²¤Îɽ¸½¤È¥ê¡¼´Ä¤Îɽ¸½ ¹â¶¶Îé»Ê Lorentz ·²¤Îɽ¸½¤ÈµåÈ¡¿ô ÏÆËÜ ¼Â Kac-Moody Lie algebra ¤Î character formula Åù¼Á¶õ´Ö¾å¤ÎĴϲòÀÏ(1983.Dec.19-21)ÅìÂçÍý³ØÉô À¤ÏÿͿù±º¸÷Éס¦¹¾¸ýÀµ¹¸ ¶¶ÄÞƻɧ Ⱦñ½ã¥ê¡¼·²¾å¤Î¥Û¥¤¥¿¥Ã¥«¡¼´Ø¿ô¤ÈÎ̻ҸÍÅijʻҤΥ¹¥Ú¥¯¥È¥ëʬ²ò ´Ö²¼¹îºÈ ³¬¿ô2¥³¥ó¥Ñ¥¯¥È¥ê¡¼¥Þ¥óÂоζõ´Ö¤ÎÂÓµå´Ø¿ô¤Ë¤Ä¤¤¤Æ ²Ïź ·ò Ⱦñ½ã¥ê¡¼·²¾å¤Î¥Õ¡¼¥ê¥¨¡¦¥Þ¥ë¥Á¥×¥é¥¤¥ä¡¼¤Ë¤Ä¤¤¤Æ ¹¾¸ýÀµ¹¸ ¥Ú¡¼¥ê¡¼¡¦¥¦¥¤¡¼¥Ê¡¼·¿ÄêÍý¤Ë¤ª¤±¤ë¥«¥ó¥Ý¥ê¤Î¾ò·ï¤Ë¤Ä¤¤¤Æ º´Ê¬ÍøË Ã±°Ì±ßÈľå¤Î¥Õ¡¼¥ê¥¨Ä¶´Ø¿ô¤Ë¤Ä¤¤¤Æ ²Ïź ·ò Clozel-Delorme ¤Î Paley-Wiener ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ ÅÚ°æ±ÑÉ× ´ÊÌó²ÄǽÂå¿ô·²¤ÎÂйç¤Ç°ÂÄê¤Ê¶ËÂçÎØ´Ä·² ¶¶ÄÞƻɧ ¼«Í³·²ÃͼÌÁü¤Î¤Ê¤¹·²¤Î´ûÌóɽ¸½ ¼ã»³Àµ¿Í ¥¬¥¦¥¹¡¦¥¯¥ó¥Þ¡¼¤Î¸ø¼°¤Î¥³¥¹¥¿¥ó¥È¤Ë¤è¤ë¾ÚÌÀ¤Ë¤Ä¤¤¤Æ Æ£¸¶±ÑÆÁ Exponential Group ¤Î¤¢¤ë¼ï¤ÎÅù¼Á¶õ´Ö¤Ë¤Ä¤¤¤Æ 1984(¾¼59) ÆüËÜ¿ô³Ø²ñ 1984 April ÂçºåÂç³Ø ÆÃÊֱ̹é ÏÆËÜ ¼Â Kac-Moody Lie ´Ä¤Î»Øɸ¸ø¼°(´ö²¿³Ø) ´Ø¸ý¼¡Ïº The nilpotent subvariety of the tangent space of a symmetric space(È¡¿ô²òÀϳØ) Âè23²ó¼Â´Ø¿ôÏÀÂè22²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1984.July24-26) ΰµåÂç³Ø (¾¶) ¶¶ÄÞƻɧ Åù¼Á¶õ´Ö¾å¤ÎĴϲòÀϤÈÎÌ»ÒÀÑʬ²Äǽ·Ï »³¾å ¼¢ Hilbert algebra associated with coadjoint orbits ÆüËÜ¿ô³Ø²ñ 1984 Oct. ÅìµþÂç³Ø Áí¹ç¹Ö±é ËÙÅÄÎÉÇ· ¥Û¥í¥Î¥ß¡¼·Ï¤È¤·¤Æ¤Î Harish-Chandra ÊýÄø¼° ÆÃÊֱ̹é ÂçÅçÍøͺ Ⱦñ½ãÂоζõ´Ö¾å¤ÎĴϲòÀÏ(È¡¿ô²òÀϳØ) ÀîÃæÀëÌÀ °ìÈ̲½¤µ¤ì¤¿ Gelfand-Graev ɽ¸½¤È³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤Î Gauss ÏÂ(Âå¿ô³Ø) ÅÚ²°¾¼Çî Virasoro algebra ¤Î Fock ɽ¸½¤ÈÊÐÈùʬÊýÄø¼°(´ö²¿³Ø) ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1984.Oct.31-Nov.3) °ËƦĹ²¬²¹Àô ÀéºÐÁñ À¤Ïÿ͵ܺê¹À »³²¼ Çî Ⱦñ½ã¥ê¡¼·²¤Î generalized Gelfand-Graev ɽ¸½¤Ë¤Ä¤¤¤Æ ²¬ËÜÀ¶¶¿¡¦Âô¹¾Î´°ì¡¦ÅÚ°æ±Ñͺ¡¦ÇÏÅç Àµ Einstein-Maxwell ÊýÄø¼°¤È²ò¤ÎÊÑ´¹·² ÂçÅçÍøͺ µåÈ¡¿ô¤ÎÁ²¶áµóÆ°¤Ë¤Ä¤¤¤Æ À¾»³ µý Ⱦñ½ã·²¤Î virtual character module ¤È Weyl ·²¤Îɽ¸½ »³¾å ¼¢ The type of von Neumann algebras associated with a certain transitive groupoid ¾¾ÌÚÉÒɧ Closure relation for orbits on affine symmetric spaces under the action of minimal parabolic subgroups ´¢»³ÏÂ½Ó GLn, SLn, Sp2n¤Î¶ËÂçÎØ´ÄÉôʬ·²¤Î¶¦ÌòÎà¤ÎʬÎà ÇßÅÄ µü ¸Åŵ Lie ´Ä¤Î¶ÒÎí·²¤Î¶¦íÃÀ¤Èɽ¸½¤Î¥Æ¥ó¥½¥ëÀѤˤĤ¤¤Æ ¾¾Ëܵ׵Á SU(2,2) ¤Ë¤ª¤±¤ë Cohomological Hardy Space 1985(¾¼60) ¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¾å¤ÎĴϲòÀϤȤ½¤Î±þÍÑ¡×1985.Jan.16-19(°ÂÆ£¾Ò°ìÂåɽ) Ê¿°æ Éð Lie super-algebra¤Î¡Èunitary"ɽ¸½ ÀÄËÜÏÂɧ Problem of eigenfunction expansion on discrete set º´Ê¬ÍøË ¼ÂÁжʷ¿Âоζõ´Ö¤Î Fourier ÊÑ´¹ ¹ÓÌÚÉÔÆóÍÎ Indecomposable representations with invariant inner product¡½¡½A theory of Gupta-Bleuer ´Ø¸ý¼¡Ïº ¶ÒÎí¸µ¤È Cayley ÊÑ´¹ ÂÀÅÄÂöÌé On nilpotent orbits associated to classical symmetric pairs ºØÆ£ ËÓ On the associate cycles of modules with highest weight À¾»³ µý Virtual character module for semisimple Lie groups »°¾å½Ó²ð Sp(n,R) ¤Î»Øɸ¸ø¼°¤ÈÉÔÊѸÇÍĶ´Ø¿ô¤Î»ý¤Á¾å¤²¤Ë¤Ä¤¤¤Æ ¶¶ÄÞƻɧ ÀÑʬ²Äǽ¤ÊÎÌ»ÒnÂÎÌäÂê ³ª¹¾¹¬Çî Virasoro algebra ¤Î Fockɽ¸½I ÅÚ²°¾¼Çî Virasoro algebra ¤Î Fockɽ¸½II ÀÄÌÚ ÌС¦²ÃÆ£Ëö¹ ¤¢¤ë¼ï¤ÎȾñ½ãÂоζõ´Ö¾å¤ÎÉÔÊѸÇÍĶ´Ø¿ô¤ÎÀܳ¸ø¼° ÃæÀ¾ ê÷ ÁÇγ»ÒʪÍý³Ø¤Ë¤ª¤±¤ëĶÂоÎÀ¤ÈBRSÂоÎÀ Âè24²ó¼Â´Ø¿ôÏÀÂè23²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1985.July18-20) Ê¡ÅçÂç³Ø (¾¶) ´Ø¸ý¼¡Ïº Âоζõ´Ö¾å¤Î Poisson ÊÑ´¹¤Ë¤Ä¤¤¤Æ ¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½¤Î´ö²¿³ØŪ¼Â¸½¡×1985.July22-25 (»°Ä»Àî¼÷°ìÂåɽ) ¶â¹ÔÁÔÆó °¿¼ï¤Î¥¢¥Õ¥£¥óÂоζõ´Ö¤Î¥³¥ó¥Ñ¥¯¥È²½¤È¤½¤Î±þÍÑ ´Ø¸ý¼¡Ïº Âоζõ´Ö¤Î´ðËÜ·²¤Ë¤Ä¤¤¤Æ¤ÎÃí°Õ ¾¾ÌÚÉÒɧ Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits ²£ÅÄ°ìϺ Îã³°¥ê¡¼·²¤Î¼Â¸½¤Ë¤Ä¤¤¤Æ ±×ËÜ ÍÎ p¿ÊÂξå¤Î GSp(2) ¤Î´ûÌó super cuspidal ɽ¸½¤Ë¤Ä¤¤¤Æ ¾®ÃÓÏÂɧ¡¦»ûÅÄ »ê SO,Sp ¤Î͸¼¡¸µÉ½¸½¤Ë¤Ä¤¤¤Æ Ìî¼δ¾¼ Representations of a solvable Lie group on ¢ßb cohomology spaces ëºê½ÓÇ· Characteristic varieties of highest weight modules and primitive quotients ËÙÅÄÎÉÇ· Primitive ideals and the Harish-Chandra equation Çð¸¶Àµ¼ù ÂçÅçÍøͺ ¥æ¥Ë¥¿¥ê²½²Äǽ¤Ê Harish-Chandra ²Ã·²¤Îͳ¦À¤Ë¤Ä¤¤¤Æ »³²¼ Çî Multiplicity free property for generalized Gelfand-Graev representations of semisimple Lie groups ¾¾Ëܵ׵Á Ⱦñ½ã Lie ·²¾å¤Î Whittaker Ķ´Ø¿ô »°Ä»Àî¼÷°ì ¼ç·ÏÎóɽ¸½¤Î¹ÔÎóÍ×ÁǤËÂФ¹¤ë Constant term ¤Ë¤Ä¤¤¤Æ ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖµåĶȡ¿ô¤Ê¤é¤Ó¤Ë¤½¤ì¤Ë¤è¤ë¦ÄĶȡ¿ô¤ÎŸ³«¡×1985Sept10-12 (Ê¿°æ ÉðÂåɽ) ÀÄÌÚ ÌС¦²ÃÆ£Ëö¹ U(4,2)/(U(2)¡ßU(2,2)) ¾å¤ÎÉÔÊѸÇÍĶ´Ø¿ô¤ÎÀܳ¸ø¼°¤Ë¤Ä¤¤¤Æ ²Ï¾å ů¡¦³á¸¶ µ£ ɽ¸½ÏÀ¤ÈKÍýÏÀ ÌÚȨÆƹ§ Invariant eigendistribution on the tangent space of semisimple symmetric spaces º´Ìî ÌС¦N.Bopp Distributions spheriques invariantes sur l'espace semi-simple Gc/GR Ìî¼δ¾¼ Plancherel theorem for solvable Lie groups acting simply transitively on Siegel domains Æ£¸¶±ÑÆÁ Exponential group ¤Î orbit method ¤Ë¤Ä¤¤¤Æ ¾¾ËÜÌмù On the unitarizability of irreducible representation of GL(n,k) »°¾å½Ó²ð SU(p,q) ¤Î»ØɸÅù¼°¤Ë¤Ä¤¤¤Æ »³¸ý ÆØ On higher-order terms in asymptotic expansions for irreducible characters of semisimple Lie groups »³²¼ Çî Highest weight vectors for generalized Gelfand-Graev representations of semisimple Lie groups ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñÆÃÊֱ̹é ÉÙ»³Âç³Ø ëºê½ÓÇ· Ⱦñ½ãLie·²¤Îɽ¸½¤È´ú¿ÍÍÂξå¤ÎÈùʬÊýÄø¼°·Ï ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1985.Nov.6-9)ÅòÍèÄ®¤ß¤Î¤Á³ØÁñ À¤ÏÿͶ¶ÄÞƻɧ Æ£¸¶±ÑÆÁ Exponential group ¤Î monomial ɽ¸½ ÈøȪ¿ÌÀ ̵¸ÂÂоη²¤Î¥æ¥Ë¥¿¥êɽ¸½ ¾¾ËÜÌмù GL2(F)¤Î´ûÌóɽ¸½¤Î unitarizability ¤Ë¤Ä¤¤¤Æ ´¢»³ÏÂ½Ó Ä¾¸ò·²¤Î¶ËÂç¥È¡¼¥é¥¹¤Î¶¦ÌòÎà¤ÎʬÎà ¿ÜÆ£À¶°ì Kac-Moody Lie´Ä¤ËÂФ¹¤ë Kazhdan-Lusztig ͽÁۤˤĤ¤¤Æ ÅÚ°æ±Ñͺ ¥â¥¸¥å¥é¥¤¤Î´ö²¿ À¾»³ µý Hecke ´Ä¤Î»Øɸ²Ã·²¾å¤Îɽ¸½ ¸ÅÄÅÇî½Ó Lie superalgebra ¤Î¥æ¥Ë¥¿¥êɽ¸½ »³ÅÄ͵»Ë ¥½¥ê¥È¥óÊýÄø¼°¤Î¥¹¡¼¥Ñ¡¼²½¤Ø¤Î»î¤ß ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÈóI·¿·²¤Î¥æ¥Ë¥¿¥ê¡¼É½¸½¡×1985.Dec.9-13(³á¸¶µ£Âåɽ) ³á¸¶ µ£ ÈóI·¿·²¤Îɽ¸½ÏÀ Æ£¸¶±ÑÆÁ ²Ä²ò¥ê¡¼·²¤Îñ¹àɽ¸½¤Ë¤Ä¤¤¤Æ »³¾å ¼¢ ²Ä²ò¥ê¡¼·²¤Îcharacter¤Èorbit method Ìî¼δ¾¼ On symmetry of L1(G) for solvable Lie groups ÈøȪ¿ÌÀ Configuration space and unitary representations of the group of diffeomorphisms ²Ï¾å ů ɽ¸½ÏÀµÚ¤ÓºîÍÑÁÇÏÀ¤Ë¤ª¤±¤ëÄ㼡¥³¥Û¥â¥í¥¸¡¼ÏÀ³µÀâ ÊÒ»³ÎÉ°ì II1·¿¤Î hyperfinite °ø»Ò´Ä¾å¤Î²Ä»»¤Ê²Ä´¹Î¥»¶·²¤ÎºîÍѤ˴ؤ¹¤ëÁÐÂÐÄêÍý ÂçÆâËÜÉ× ·²¤ÎºîÍѤΠPoisson ¶³¦¤Ë¤Ä¤¤¤Æ ³á¸¶ µ£ Dirac induction of semisimple Lie groups À¾»³ µý Ⱦñ½ã·²¤Î Discrete series ¤Ë¤Ä¤¤¤Æ 1986(¾¼61) ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à µþÂçÍý³ØÉô 1986 Jan 16-18 ´Ø¸ý¼¡Ïº D-module ¤Èɽ¸½ÏÀ ÂçÅçÍøͺ Semisimple symmetric space ¤Î Plancherel ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ ÀÄËÜÏÂɧ Selberg ÀÑʬ¤Ë¤Ä¤¤¤Æ »°¾å½Ó²ð Ⱦñ½ã¥ê¡¼·²¤ÎÉÔÊѸÇÍĶȡ¿ô¤Ë´Ø¤¹¤ë Shelsted ¤ÎÍýÏÀ À¾»³ µý Ê£Áǥ꡼·²¤Î»Øɸ²Ã·²¤Ë¤Ä¤¤¤Æ ÌÚȨÆƹ§ Ⱦñ½ãÂоζõ´Ö¾å¤ÎÉÔÊÑÈùʬÊýÄø¼° ÀÄÌÚ ÌРëºê½ÓÇ· Affine Weyl ·²¤Îɽ¸½¤È D-module ¾¾Ëܵ׵Á Whittaker model »³²¼ Çî Ⱦñ½ã¥ê¡¼·²¤ÎͶƳɽ¸½¤Ë´Ø¤¹¤ë½ÅÊ£ÅÙÄêÍý¤È¤½¤Î±þÍÑ ÆüËÜ¿ô³Ø²ñǯ²ñÆÃÊÌ¹Ö±é µþÅÔÂç³Ø Æ£¸¶±ÑÆÁ ²Ä²ò·²¤Î¥æ¥Ë¥¿¥êɽ¸½ÏÀ(´ö²¿³Ø) Âè25²ó¼Â´Ø¿ôÏÀÂè24²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1986.July22-24) ÌÄÌ綵°éÂç³Ø(¾¶) Ìî¼δ¾¼ Åù¼Á Siegel Îΰè¾å¤Î²òÀÏ³Ø¤È Lie ·²¤Îɽ¸½ ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖAnalysis on Homogeneous Spaces and Representations of Lie Groups ( ÂçÅçÍøͺÂåɽ) M.Duflo Plancherel theorem and orbit method M.F.Vergne Index theorem and equivariant cohomology W.Schmid Comparison of various constructions of representations of representations of semisimple Lie groups Æ£¸¶±ÑÆÁ¡¦»³¾å ¼¢ Some monomial representations of exponential groups M.Flensted-Jensen Towards a Paley-Wiener theorem for semisimple symmetric spaces N.R.Wallach On the condition of moderate growth J.N.Bernstein On the support of Plancherel measure °Ëã±Ùϯ¡¦¿ÀÊÝÆ»Éס¦»°ÎØůÆó¡¦Èø³ÑÀµ¿Í Solvable lattice models ÅÚ²°¾¼Çî 2 dimensional conformal field theory and representation of braid group D.A.Vogan The orbit methods and unitary representations P.J.Sally ¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö¥ê¡¼·²¤Îɽ¸½¤ÈÅù¼Á¶õ´Ö¾å¤Î´Ø¿ô¡×1986.Sept.3-4 (·§¸¶·¼ºîÂåɽ) ÌÚ¼ãͺ A classification problem of prehomogeneous vector spaces ¿ÜÆ£À¶°ì Groups associated with unitary forms of Kac-Moody algebras »³²¼ Çî Finite multiplicity theorems for induced representations of semisimple Lie groups and their applications to generalized Gelfand-Graev representations ¼ã»³Àµ¿Í A Paley-Wiener type theorem on symmetric spaces and its applications ¶¶ÄÞƻɧ Certain irreducible representations of a group of maps with values in a free group »°Ä»Àî¼÷°ì On formal degree of principal series representation Analysis on Homogeneous Spaces and Representations of Lie groups(1986.Sept.5-6) ¹ÅçÂç³ØÍý³ØÉô M.Duflo Harish-Chandra descent method and character formulae M.Flensted-Jensen H-spherical (g,K)-modules K.Okamoto On thegeneralized Geroch conjectur T.Hirai Construction of irreducible unitary representations of infinite symmetric groups M.Vergne Equivalent cohomology and characteristic classes N.Wallach Toda lattices ÆüËÜ¿ô³Ø²ñ 1986 Sept. ÀéÍÕÂç³Ø Áí¹ç¹Ö±é M.Flensted-Jensen Trends in the development of analysis on symmetric spaces ÆÃÊÌ¹Ö±é ¾¾ÌÚÉÒɧ Ⱦñ½ãÂоζõ´Ö¾å¤Îµ°Æ»¹½Â¤¤ÈĴϲòÀÏ(È¡¿ô²òÀϳØ) ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖD-²Ã·²³µÀâ¡×(1986 Oct 27-29) Çð¸¶Àµ¼ùÂåɽ Â绳ÍÛ²ð¡¦À¶¿åͦÆó D-²Ã·²ÆþÌç ëºê½ÓÇ· D-²Ã·²¤È·²¤Îɽ¸½ÏÀ ºØÆ£À¹É§ D-²Ã·²¤È Hodge ÍýÏÀ º´Æ£´´É× D-²Ã·²¤ÈÈùʬÊýÄø¼° ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1986.Nov.20-22) ¸Å縦½¤¥»¥ó¥¿¡¼ À¤ÏÿÍÌî¼δ¾¼ ¾®ÎÓ½Ó¹Ô Îΰè¤È¤½¤ÎÄêµÁ´Ø¿ô¤Î Fourier-Laplace ÊÑ´¹¤ÎÎíÅÀ½¸¹ç¤Ë¤Ä¤¤¤Æ ´¢»³ÏÂ½Ó ¼Â Cartan Éôʬ´Ä¤Î¶¦ÌòÎà¤ÎʬÎà¤Ë´Ø¤¹¤ë°ìÃí°Õ ÅÄÃæ¾ÍÊ¿ ÂоΥ꡼¥Þ¥ó¶õ´Ö¾å¤Î Hausdorff-Young ÄêÍý ³á¸¶ µ£ Î¥»¶¤Ù¤Îí·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ ¼¼ À¯Ï ³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¾å¤ÎÉÔÊÑĶȡ¿ô ÇßÅÄ µü ÆüìÈ¡¿ô¤Ë¤Ä¤¤¤Æ¤ÎÆüì¤Ê»ëÅÀ¡½q-analogue ¤ò¼´¤È¤·¤Æ¡½ ¹â°æÇî»Ê ÎôÅù¼Á¶õ´Ö¾å¤Î Baum-Connes ͽÁÛ ¸ÅÄÅÇî½Ó Irreducible unitary representations Lie superalgebras of type A ²Ïź ·ò Fourier transform associated with holomorphic discrete series and a characterization of the discrete part of Lp-functions 1987(¾¼62) ÆüËÜ¿ô³Ø²ñ 1987 April ÅìµþÂç³Ø ÆÃÊֱ̹é À¾»³ µý Ⱦñ½ã Lie ·²¤Î»Øɸ²Ã·²¤È Weyl ·²¤ª¤è¤Ó¤½¤Î Hecke ´Ä¤Îɽ¸½(È¡¿ô²òÀϳØ) Âè26²ó¼Â´Ø¿ôÏÀÂè25²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1987.July20-22) Ë̳¤Æ»Âç³Ø (¾¶) º´Ìî ÌРȾñ½ãÂоζõ´Ö¾å¤ÎÎ¥»¶¥¹¥Ú¥¯¥È¥ë¤ò»ý¤ÄÉÔÊÑÂÓµåĶ´Ø¿ô ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂоζõ´Ö¾å¤Î¸ÇÍÈ¡¿ô¤È¥ê¡¼·²¤Îɽ¸½¡×1987.July27-30 (Êö¼¾¡¹°Âåɽ) º£ÌîÂÙ»Ò Sp(p,q)¤ÎÉÔϢ³Éôʬ·²¤Î cohomology ¤Ë¤Ä¤¤¤Æ Parthasarathy Unitary highest weight modules ËÙÅÄÎÉÇ· Character D-modules on a reductive group ¿ÜÆ£À¶°ì Differentiable vectors and analytic vectors in completions of certain representation spaces of a Kac-Moody algebra ³ª¹¾¹¬Çî Conformal field theory ¤È A·¿ Hecke´Ä¤Îɽ¸½ ÅÚ°æ±ÑÉ× CPn¾å¤Î¼ç«¥È¡¼¥é¥¹´Ô¸µ ¾¾Ëܵ׵Á Whittaker vectors ¤Ë¤Ä¤¤¤Æ ¾¾ÌÚÉÒɧ¡¦ÂçÅçÍøͺ ¾®ÎÓ½Ó¹Ô Âоζõ´Ö¤Î¥Ù¥¯¥È¥ë«¤Ë¼Â¸½¤µ¤ì¤ë¥æ¥Ë¥¿¥êɽ¸½¤Ë¤Ä¤¤¤Æ ´Ø¸ý¼¡Ïº ¿¹à¼°¤ÎÊ£ÁÇ¥Ù¥¤ÎÀµÂ§²½¤ÈñϢ·ëȾñ½ãÂоζõ´Ö¤Î¼ç·ÏÎó¤Ë¤Ä¤¤¤Æ ¹¾¸ýÀµ¹¸¡¦ÅÄÃæ¾ÍÊ¿¡¦¾®Àô ¿ SL(3,R)¤Î°ìÍÍͳ¦É½¸½¤Ë¤Ä¤¤¤Æ ÃÝÃæÌÐÉ× Pathwise Projective Invariance of Brownian Motion (& Unitary Representations of SL(2,R)) ÈøȪ¿ÌÀ Hilbert space ¾å¤ÎÄ´Ï´ؿô ¤È Levy Laplacian ÂçÅçÍøͺ¡¦º´Ê¬ÍøË¡¦¼ã»³Àµ¿Í Âоζõ´Ö¾å¤Î Ehrenpreis ¤Î´ðËܸ¶Íý º´Ìî ÌÐ Âоζõ´Ö¾å¤Î¹çÀ®ÀѤÎÄêµÁ¤È°ìÄêÍý ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1987.Nov.12-14) ·Ú°æÂô ÆüËÜÂç³Ø¸¦½¤½ê À¤ÏÃ¿Í »Þ¾¾ ¹§ ¿ÜÆ£À¶°ì Exponentiability of certain completion of the unitary'orm of a Kac-Moody algebra ĹëÀî¹À»Ê Affine Lie ´Ä¤Î Spinor ɽ¸½¤Ë¤Ä¤¤¤Æ ÃæΤ Çî ¥é¥×¥é¥·¥¢¥ó¤Î¶Ò¤¬À¸À®¤¹¤ë1·Â¿ôȾ·² »³²¼ Çî Ⱦñ½ã¥ê¡¼·²¤ÎÎ¥»¶·ÏÎóɽ¸½¤ÎͶƳɽ¸½¤Ø¤ÎËä¤á¹þ¤ß »°¾å½Ó²ð ¸Åŵ·²¤Î´ËÁý²Ã¤Ê»Øɸ¤ÎÅù¼°¤Ë¤Ä¤¤¤Æ ëºê½ÓÇ· Hecke algebras and D-modules °Ëã±Ùϯ¡¦¿ÀÊÝÆ»Éס¦»°ÎØůÆó¡¦Èø³ÑÀµ¿Í Two remarks on recent development in solvable models ´Ø¸ý¼¡Ïº Invariant systems of differential equations on Siegel's upper half-plane 1988(¾¼63) ÆüËÜ¿ô³Ø²ñ 1988 April Ω¶µÂç³Ø ÆÃÊÌ¹Ö±é »³²¼ Çî Ⱦñ½ã¥ê¡¼·²¤Î°ìÈ̲½¤µ¤ì¤¿ Gelfand-Graev ɽ¸½¡½Í¸Â½ÅÊ£ÅÙÄêÍý¤È´ûÌóɽ¸½¤Î Whittaker model¡½ (È¡¿ô²òÀϳØ) ëºê½ÓÇ· Ⱦñ½ã·²¤Îɽ¸½¤ÈD²Ã·²(Âå¿ô³Ø) ¿ôÍý¸¦¸¦µæ½¸²ñ¡Öɽ¸½ÏÀ¤È¤½¤ÎʪÍýŪ±þÍÑ¡×1988.July18-21 (³ª¹¾¹¬ÇîÂåɽ) ¿ÜÆ£À¶°ì Loop ·²¤Î affine Lie ´Ä¤Ø¤ÎºîÍѤ˴ؤ·¤Æ ÂÀÅÄÂöÌé ¸Åŵ·¿ Lie ´Ä¤Î admissible ¤Ê¶ÒÎíµ°Æ»¤ÎʬÎà ÏÆËÜ ¼Â A topic from the representation theory of infinite-dimensional Lie algebras »°Ä®¾¡µ× Representation theory of quantum groups ¶¶ÄÞƻɧ ÆóÉô¼ùÌÚ¾å¤Î Selberg À׸ø¼°¤Ë¤Ä¤¤¤Æ °Ëã±Ùϯ¡¦¿ÀÊÝÆ»Éס¦¹ñ¾ìÆØÉס¦»°ÎØůÆó¡¦Èø³ÑÀµ¿Í ²Ä²ò³Ê»ÒÌÏ·¿¤È Weyl-Kac »Øɸ¸ø¼° ¼¾å ½ç ²Ä²ò³Ê»ÒÌÏ·¿¤Èɽ¸½ÏÀ ³ª¹¾¹¬Çî P1¾å¤Î CFT ¤È braid ·²¤Î¥â¥Î¥É¥í¥ß¡¼É½¸½ ¾®Ìî ·°¡¦¾®ÎÓ½Ó¹Ô Note on Hiruzebruch's proportionality principle ¾¾ÌÚÉÒɧ¡¦ÂçÅçÍøͺ Î¥»¶·ÏÎóɽ¸½¤Î¼ç·ÏÎóɽ¸½¤Ø¤ÎËä¤á¹þ¤ß Çð¸¶Àµ¼ù D-modules on flag varieties for degenerate infinitesimal characters ´Ø¸ý¼¡Ïº Ⱦñ½ã·²¤Î²Ä´¹¤ÊÂйçƱ·¿¤ÈÂоζõ´Ö¤ÎÉôʬ¶õ´Ö Ìî¼δ¾¼ Use of Jordan structure in harmonic analysis º´Ìî ÌÐ Âоζõ´Ö¾å¤ÎÂÓµåĶ´Ø¿ô¤Èµ°Æ»ÊýË¡ ²¬ËÜÀ¶¶¿ Kac-Moody Lie ·²¤ÎÄê¾ï¼´ÂоΠEinstein-Maxwell ÊýÄø¼°¤Î²ò¤Ø¤ÎºîÍÑ Âè27²ó¼ÂÈ¡¿ôÏÀ¡¦Âè26²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1988.July21-23)=@²¬»³Âç³Ø (¾¶) »³ÅÄ͵»Ë ĶÂоÎÈùʬÊýÄø¼°¤ÎÂå¿ôŪ¹½Â¤ ÆüËÜ¿ô³Ø²ñ 1988 Oct. ¶âÂôÂç³Ø ÆÃÊֱ̹é ÌÀµ½Ó Î̻ҷ²¤Îɽ¸½¤ÈµåÈ¡¿ô¤Î q-analogue (È¡¿ô²òÀϳØ) ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1989.Nov.19-22) ²Ï¸ý¸ÐÉٻκùÁñ À¤Ïÿͻ³ÅÄ͵»Ë ÂçÅçÍøͺ Asymptotic behavior of Flensted-Jensen's spherical trace functions with respect to spectral parameters ¾®ÎÓ½Ó¹Ô ´ÊÌó·¿Åù¼Á¶õ´Ö¤Ø¤Î¸ÇÍÉÔϢ³¤ÊºîÍÑ ²Ïź ·ò On a global realization of a discrete series for SU(n,1) as applications of Szego operator and limits of discrete series Èø³ÑÀµ¿Í Path representations of sl^(r,C)Ʊ»þ¸ÇÍÈ¡¿ô Íî¹ç·¼Ç· Rank1¤ÎÂоζõ´Ö¤ÎÉÔÊÑĶȡ¿ô ¼¨Ìî¿®°ì Riemann Âоζõ´Ö ¤Î line bundle ¾å¤ÎÉÔÊÑÈùʬºîÍÑÁǤΠ¿û ½¤°ì Hermite ÂоÎÂФΠLie ´Ä¤Î´ûÌóºÇ¹â¥¦¥§¥¤¥Èɽ¸½¤Î¹½À®¤Ë¤Ä¤¤¤Æ Æ£¸¶±ÑÆÁ On monomial representations of exponential solvable Lie groups À¾»³ µý Oscillator representations and a super dual pair ÅÄÃæ¾ÍÊ¿ C-´Ø¿ô¤Î determinant ¤Ë¤Ä¤¤¤Æ¡½¡½SL(n,R) case¡½¡½ ²¬ËÜÀ¶¶¿¡¦ÃÓÅÄ ¾Ï¡¦¶¶ËÜδ»Ê¡¦²ÏÌîÂÙ¼£ Affine Kac-Moody Lie ·²¤ËÂФ¹¤ë Borel-Weil ÄêÍý º´Ìî ÌÐ Âоζõ´Ö¤Î Eisenstein ÀÑʬ ¾¾Âô½ß°ì Hirzebruch ¶ÊÌÌ¤Î¥Ö¥í¡¼¥¢¥Ã¥×¤È C ·¿ Weyl ·² ¸¦µæ½¸²ñ¡ÖLie ·²¤Ë¤Ä¤¤¤Æ¡× 1988 Dec.15-16 ²¬»³Íý²ÊÂç³Ø ĹÌî Àµ Âоζõ´Ö¤Î¹½Â¤ÏÀ ¶â¹ÔÁÔÆó Jordan Âå¿ô¤Ë¤ª¤±¤ë¥·¥ë¥Ù¥¹¥¿¡¼¤Î´·ÀΧ¤È¤½¤Î±þÍÑ ¸ü»³·ò¼¡ Polarity ¤ò¤â¤ÄÂоζõ´Ö²¤Ë¤Ä¤¤¤Æ Ìî¼δ¾¼ Algebraically independent generators of invariant differential operators on a symmetric cone ¾®ÎÓ½Ó¹Ô Proper action on a homogeneous space of reductive type ¸åÆ£¼éË® Standard Cartan subalgebra ¤Ë¤Ä¤¤¤Æ 1989(¾¼64¡¦Ê¿À®¸µ) ¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡Öɽ¸½ÏÀ¤Ë¤ª¤±¤ë¶¦Ìò¿ïȼµ°Æ»¤Î¸¦µæ¡×(1989 Feb 22-25) ³á¸¶ µ£Âåɽ ²Ï¾å ů ¥Õ¥©¥ó¥Î¥¤¥Þ¥óÉôʬ´Ä¤Î»Ø¿ô¤Ë´Ø¤¹¤ë´Ô¸µÏÀ ÈøȪ¿ÌÀ ̵¸ÂÎ¥»¶·²¤ÎͶƳɽ¸½ Intertwining Number Theorem ¤È¤½¤Î±þÍÑ ÊÒ»³ÎÉ°ì Duality for an action of a countable amenable group on an injective factor ÂçÆâËÜÉ× ¥Û¥í¥Î¥ß¡¼°¡·²¤Î´ÊÌó¤ËÉտ路¤¿C*´Ä¤Ë¤Ä¤¤¤Æ Æ£¸¶±ÑÆÁ Reciprocite de Frobenius pour des groupes de Lie resolubles exponentiels ³á¸¶ µ£ Induced traces on coaction crossed product C*-algebras ÆüËÜ¿ô³Ø²ñǯ²ñ ÆüËÜÂç³Ø Áí¹ç¹Ö±é M.Gelfand Hypergeometric functions and combinatorics ÆÃÊÌ¹Ö±é ²Ï¾å ů ͸·¿¥Õ¥©¥ó¥Î¥¤¥Þ¥ó´Ä¤ÎÉôʬ´Ä¤Î¹½Â¤¤ª¤è¤Ó·²ºîÍѤˤĤ¤¤Æ º´Æ£Ê¸¹ ¥¢¥¤¥¼¥ó¥·¥å¥¿¥¤¥óµé¿ô¤Î°ìÈ̲½¤ÈÍÍý¿ôÂξå¤Î¡Öµå¥Õ¡¼¥ê¥¨ÊÑ´¹¡× (Âå¿ô³Ø) ¾åÌî´î»°Íº Èó¥³¥ó¥Ñ¥¯¥ÈÎ̻ҷ² SUq(1,1) ¤Î¥æ¥Ë¥¿¥ê¡¼É½¸½¤Ë¤Ä¤¤¤Æ (Âå¿ô³Ø) Âè28²ó¼ÂÈ¡¿ôÏÀ¡¦Âè27²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1989.July20-22) ¹°Á°Âç³Ø (¾¶) ¾®ÎÓ½Ó¹Ô È¾Ã±½ãÂоζõ´Ö¾å¤Î¥Ù¥¯¥È¥ë«ÃÍ´Ø¿ô¤Ë¼Â¸½¤µ¤ì¤ë¥æ¥Ë¥¿¥êɽ¸½ ¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½¤ÈÆüì´Ø¿ô¡×(1989 July 3-6) ¶¶ÄÞƻɧÂåɽ Æ£¸¶±ÑÆÁ Restrictions of unitary representations for exponential groups °æ¾å½ç»Ò Fourier transforms for affine automorphism groups on Siegel domain Ìî¼δ¾¼ Algebraically independent generators of invariant differential operators on a symmetric cone À¾»³ µý OSP(2n,2m,R) ¤Î discrete series ¤Ë¤Ä¤¤¤Æ µÈÅÄÀµ¾Ï ÀÄËÜ-Gelfand ¤ÎĶ´ö²¿´Ø¿ô¤È K3-¶ÊÌ̤β¤Ë¤Ä¤¤¤Æ ÀîÃæÀëÌÀ ͸ÂÂξå¤Î reductive ¤ÊÂоζõ´Ö¤Ë¤ª¤±¤ëµå´Ø¿ôÏÀ µÈÅÄ·ÉÇ· On the unitarizability of principal series representations of p-adic Chevalley groups H.Rubenthaler Some zeta functions related to certain complex symmetric spaces ÂçÅçÍøͺ Ⱦñ½ãÂоζõ´Ö¤Î Plancherel ¬Å٤ˤĤ¤¤Æ ÌÚȨÆƹ§ Âоζõ´Ö¾å¤ÎĶµåÈ¡¿ô¤Ë¤Ä¤¤¤Æ Íî¹ç·¼Ç· ÉÔÊÑĶ´Ø¿ô¤Î¤ß¤¿¤¹ÈùʬÊýÄø¼°·Ï¤Ë¤Ä¤¤¤Æ »³ÅÄ͵»Ë Î̻ҷ²¤Î SUq(n) ¤Îɽ¸½ »Ö¼¹°Ç· Irreducible decompositions of the regular representation of a restricted direct product group ¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡ÖÎ̻ҷ²¤È Robinson-Schenste Âбþ¡× ÍÌÚ ¿Ê Robinson-Schensted Âбþ¤È left cell ²¬ÅÄæâ°ì Wreath ÀѤΠRobinson-Schensted Âбþ °Ëã±Ùϯ¡¦¿ÀÊÝÆ»Éס¦»°ÎØůÆó Î̻ҷ² Uq(gl(n,C)) ¤Î q¢ª0 ¤Ç¤Îɽ¸½¤È Robinson-Schensted Âбþ »ûÅÄ »ê Robinson-Schensted Âбþ¤È¤½¤Î°ì² ¾¾ß·½ß°ì Flag manifold ¤È Robinson-Schensted Âбþ ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñ ¾åÃÒÂç³Ø Áí¹ç¹Ö±é ÅÚ²°¾¼Çî 2¼¡¸µ¶¦·ÁŪ¾ì¤ÎÍýÏÀ¤Ë¤Ä¤¤¤Æ ÆÃÊֱ̹é Çð¸¶Àµ¼ù Kac-Moody Lie´Ä¤Ë´Ø¤¹¤ë Kazhdan-Lusztig ͽÁÛ(Âå¿ô³Ø) W.A.Casselman Recent results in geometry, arithmetic, and analysis for Satake compactifications (Âå¿ô³Ø) ¾®ÎÓ½Ó¹Ô Åù¼Á¥Ù¥¯¥È¥ë«¾å¤ÎĴϲòÀϤÈȾñ½ã¥ê¡¼·²¤Î¥æ¥Ë¥¿¥ê¡¼É½¸½ (È¡¿ô²òÀϳØ) J.Faraut (È¡¿ô²òÀϳØ) ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1989.Nov.19-22) ¶á¹¾È¬È¨»Ô ¶á¹¾È¬È¨¹ṉ̃µÙ²Ë¼ À¤ÏÃ¿Í ¼¼ À¯Ï ºØÆ£ ËÓ Localization of D-modules »³º¬¹¨Ç· A,B,C,D ·¿¤Î Uq(g) ¤Î PBW-Th ¤Ë¤Ä¤¤¤Æ ¹ñ¾ìÆØÉ× Quantum R-matrix for G2 and a Solvable lattice model in Statistical Mechanics Èø³ÑÀµ¿Í ¥¹¥Ô¥óɽ¸½¤ËÂбþ¤¹¤ë R-matrix ¤Ë¤Ä¤¤¤Æ ¶¶Ëܸ÷Ì÷¡¦ÎÓ¹§¹¨ Yang-Baxter ÊýÄø¼°¤ÈÎ̻ҰìÈÌÀþ·¿·²¤Îɽ¸½ÏÀ ÌÀµ½Ó¡¦»°Ä®¾¡µ× Î̻ҷ² GLq(n+1) ¤Î´ûÌóɽ¸½¤Î¹½À®¤ÈÎÌ»ÒÅù¼Á¶õ´Ö SUq(n+1)/SUq(n) ¾®ÃÓÏÂɧ Ar,A~r ·¿¤Î quiver ¾å¤ÎÉÔÊѼ°´Ä¤Ë¤Ä¤¤¤Æ W.A.Casselman From asymptotic behavior to Plancherel measure ÂÀÅÄÂöÌé ¸Åŵ·¿ÂоÎÂФζÒÎíµ°Æ»¤ÎÊÄÊñ¤Ë¤Ä¤¤¤Æ ²Ïź ·ò Szego Operators and a Paley-Wiener Theorem º´Ìî ÌÐ Âоζõ´Ö¾å¤Î Eisenstein ÀÑʬ¤È¤½¤Î±þÍÑ¡½Âоζõ´Ö Gc/G ¾å¤Î Plancherel ¸ø¼°¡½ ÏÂÅÄÎÃ»Ò p ¾å¤ÎÀµÂ§È¡¿ô¤Ë¤Ä¤¤¤Æ 1990(Ê¿À®2) Âè2²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥× 1990 Jan.8-10 Ä»¼èÂç³Ø ¶¶ÄÞƻɧ ¼ùÌÚ¾å¤ÎĴϲòÀÏ ¾¾ÌÚÉÒɧ Ⱦñ½ãÂоζõ´Ö¤Ë¤ª¤±¤ëµ°Æ»¤Îµ¹æɽ¼¨ À¾»³ µý ÅÄÃæ¾ÍÊ¿ Ⱦñ½ãÂоζõ´Ö¤Î¼ç·ÏÎó¤Î intertwining operator ¤Ë¤Ä¤¤¤Æ ¶¶ËÜδ»Ê Wess-Zumino ¥â¥Ç¥ëÆþÌç Íî¹ç·¼Ç· Rank 1 ¤ÎÂоζõ´Ö¤ÎµåÈ¡¿ô¤¬Ëþ¤¿¤¹ÈùʬÊýÄø¼° Ìî¼δ¾¼ Non-inductive linear forms ¾¾ËÜÌмù Zelvinskii ¤Î duality ¤Î explicit formula ¤Ë¤Ä¤¤¤Æ ¾®ÎÓ½Ó¹Ô Åù¼Á¶õ´Ö¤ËÉտ路¤¿Ìµ¸Â¼¡¸µÉ½¸½¤Îʬ´ô§¤ÎÎã Ãæî·ÇîÇ· ´ú¿ÍÍÂΤË͸µ°Æ»¤ò»ý¤Ä´ÊÌóÉôʬ·² ·§¸¶·¼ºî¡¦¼ã»³Àµ¿Í q ¤Ë±÷¤±¤ë Radon ÊÑ´¹ ÆüËÜ¿ô³Ø²ñ 1990 April ²¬»³Íý²ÊÂç³Ø ÆÃÊֱ̹é ÀÄËÜÏÂɧ JacksonÀÑʬ¤È¤½¤ì¤Ë´ØÏ¢¤¹¤ë2,3¤ÎÏÃÂê¤Ë¤Ä¤¤¤Æ(È¡¿ô²òÀϳØ) ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂå¿ô·²¤È¤½¤Î¼þÊÕ¡×1990 May28-31(º´Éð°ìϺÂåɽ) ÂçÅçÍøͺ Harmonic analysis on semisimple symmetric spaces ¾¾ÌÚÉÒɧ Discrete series for semisimple symmetric spaces ¾®ÎÓ½Ó¹Ô Properly discontinuous groups in a non-Riemannian homogeneous spaces ´Ø¸ý¼¡Ïº Split rank 1 semisimple symmetric spaces and c-functions Çð¸¶Àµ¼ù Crystal bases of the q-analogue of universal enveloping algebras ëºê½ÓÇ· Kazhdan-Lusztig conjecture for Kac-Moody Lie algebrs ¹Ô¼ÔÌÀɧ On prehomogeneous vector spaces A.Borel Generalized modular symbols and cohomology of arithmetic groups W.A.Casselman Remarks on Satake compactifications ¿¥Åŧ¹¬ Hodge structures and special values of L-functions associated with automorphic forms °Ë¿á»³ÃεÁ Parahoric subgroups and automorphic forms ¿ûÌ»Ë Jacobi forms and theta liftings ¿åËÜ¿®°ìϺ Special values of L-functions associated with Siegel modular forms Âè29²óÈ¡´Ø¿ôÏÀ¡¦Âè28²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1990.July18-20) ÅìË̳ر¡Âç³Ø (¾¶) ¿ÜÆ£À¶°ì Kac-Moody Lie·²¤Ë¤Ä¤¤¤Æ ICM 1990 Kyoto Invited One-Hour Adresses at the Plenary Sessions George Lusztig Intersection cohomology Methods in Representation Theory Invited Forty-Five Minute Adresses at the Session of Lie Groups and Representations Dan Barbasch Unipotent representations of real reductive groups Gunter Harder Eisenstein cohomology of arithmetic groups Masaki Kashiwara Crystallizing the q-analogue of universal enveloping algebras Olivier Mathieu Classification of simple graded Lie algebras of finite growth Toshihiko Matsuki Orbits on flag manifolds Colette Moeglin Sur les formes automorphes de carre integrable Gopal Prasad Semi-simple groups and arithmetic subgroups Stephen Rallis Poles of standard L function ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à("Repsresentation Theory of Lie Groups and Lie Algebras") (1990.Aug.30-Sept.3) ²Ï¸ý¸ÐÉٻκùÁñ T.Kobayashi Discontinuous group in a homogeneous space of reductive groups N.Wallach Invariant differential operators associated with Hermitian symmetric spaces G.Heckmann Multivariable hypergeometric functions O.Mathieu Classification of Harish-Chandra modules for the Virasolo algebra D.Barbasch Unipotent representations with Iwahori fixed vectors B.Orsted Spherical distributions on symmetric spaces A.W.Knapp Intertwining operators into L2(G/H) E.Kaniuth The Pompeiu problem for groups R.Lipsman The Penny-Fujiwara Plancherel formula for non-nilpotent Lie groups H.Fujiwara Plancherel formula for monomial representations of nilpotent Lie groups V.F.Molchanov Harmonic analysis on semisimple symmetric spaces of rank one Short communications K.Nishyiyama Classicification of super unitary irreducible representation for su(p,q/n) K.Hasegawa On "broken ZN-symmetric solutions of the Yang-Baxter equation S.Dzhumadl'daev Virasoro type Lie algebras H.Ochiai Invariant functions on the space of rank one symmetric spaces S.Ariki A decomposition of the adjoint representation of Uq(sl2) K.Suto Towards Kac-Moody Lie groups A.Bak The K-theory of Kac-Moody Lie groups A.G.Helminck Some remarks about symmetric varieties N.Boyom Affine action of solvable Lie groups and conjecture of Milnor N.X.Hai Exotic Fourier transform and strange dual spaces for Lie groups(nilpotent case) K.Okamoto Kirillov-Kostant theory and path integrals on coadjoint orbits R.Penny The Poisson kernel for the Laplace-Beltrami oprators on unbounded, homogeneous domains in Cn Salamanca-Riba On unitary representations of SO(n,m), regular integral case J-S.Huan K-bifinite and Z(g)-finite functions N.Pressley Quantum affine algebras H.Singh Second order differental equations in Lie groups N.Shimeno Eigenfunctions of invariant differential operators on U(p,q)/U(p-1,q) M.Hashizume Selberg trace formula for semiregular bipartite graphs ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñ ºë¶ÌÂç³Ø Áí¹ç¹Ö±é N.Wallach The survey of representation theory ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÅù¼Á¶õ´Ö¾å¤ÎĴϲòÀϤȷ²¤Îɽ¸½ÏÀ¡×1990.Nov13-16 (Æ£¸¶±ÑÆÁÂåɽ) ÇßÅÄ µü Capelli ¹±Åù¼°¤È multiplicity-free actions(joint work with Roger Howe) ¼ã»³Àµ¿Í The characteristic polynomial of certain square root of Laplacian ¶¶ËÜδ»Ê¡¦¾®Ìº°ìÆÁ¡¦²¬ËÜÀ¶¶¿¡¦ß·¹¾Î´°ì¡¦°Â±Ê¾°Ì Kirillov-Kostant theory and path-integrals on coadjoint orbits ¶¶ÄÞƻɧ µ÷ΥȾÀµÂ§¥°¥é¥Õ¾å¤Î¥Õ¡¼¥ê¥¨²òÀÏ Ravshan Ashurov The multiple Fourie Series ¸ÅÄÅÇî½Ó Classification of super unitary irreducible representations for su(p,q/n) ÆâÆ£ Áï Kac-Moody¥ê¡¼´Ä¤ÎÉôʬ´Ä¤Î·èÄê ÀÄÌÚ ÌС¦²ÃÆ£Ëö¹ U(p,q)/(U(r)¡ßU(p-r,q))¾å¤ÎÉÔÊѸÇÍĶ´Ø¿ô¤ÎÀܳ¸ø¼°¡½¡½infinitesimal character ¤¬ singular ¤Ê¾ì¹ç ÌÚȨÆƹ§ Zonal ¿¹à¼°¤Ë¤Ä¤¤¤Æ ¼¨Ìî¿®°ì Âоζõ´Ö¾å¤Î line bundle ¾å¤ÎĴϲòÀÏ »ûÅÄ »ê ¡ÖN-stable flagÁ´ÂΡפΠaffine ¶õ´Öʬ³ä¤ÎÁȹ礻ÏÀ¤Ø¤Î±þÍÑ ÍÌÚ ¿Ê Î̻ҷ²¤Î¿ïȼɽ¸½¤Îľ´ûÌóʬ²ò Ìî¼δ¾¼ Jordan theoretic description of algebraical independent generators of invariant differential operators °æ¾å½ç»Ò Lp-Fourier transforms for solvable Lie group acting on Siegel domain ¸¦µæ½¸²ñ¡Ö¸½Âå¤ÎÊìÈ¡¿ô¡×(1990 Dec 25-27)Ä»¼èÂç³Ø ÌÀµ½Ó ¡Ö¸½Âå¤ÎÊìÈ¡¿ô¡×¤Ë¸þ¤±¤Æ ¾¾ËÜÌмù ¶É½êÂξå¤Î°ìÈÌÀþ·Á·²¤Î»Øɸ´Ä¤Ë¤ª¤±¤ë duality operation ¤Ë¤Ä¤¤¤Æ »°Ä®¾¡µ× Î̻ҷ²¤Ë¸½¤ì¤ëľ¸ò¿¹à¼°¤ÎÊìÈ¡¿ôŸ³«¼°¤Î°ÕµÁ¤ò¹Í¤¨¤ë¤¿¤á¤Ë ÇßÅÄ µü ÉÔÊѼ°ÏÀ¡¦ÆþÌ硦°ÊÁ° =Âè°ì´ðËÜÄêÍý¤Èµ¹æŪÊýË¡= ¶¶ËÜ´î°ìϯ ÊÝ·¿´Ø¿ôÏÀ(¿ôÏÀ)¤«¤é¸«¤¿Êì´Ø¿ô ¾¾ß·½ß°ì Êì´Ø¿ô¤È¥È¥Ý¥í¥¸¡¼(I) º´ÃÝ°êÉ× Êì´Ø¿ô¤È¥È¥Ý¥í¥¸¡¼(II) ¶¶ÄÞƻɧ ÂÓµå´Ø¿ô¤ÎÊì´Ø¿ô¤ò¤á¤°¤ë2,3¤ÎÏÃÂê »³ÅÄ͵»Ë ÈóÀþ·Á¸½¾Ý¤Î²òÌÀ¤ËÊì´Ø¿ô¤Ï¹×¸¥¤Ç¤¤ë¤« ËÙÅÄÎÉÇ· Gelfand ¤Î°ìÈÌĶ´ö²¿·¿ÈùʬÊýÄø¼°¤òÇÁ¤¯ ´äºê¹î§ ÈùʬÊýÄø¼°¤ÈÊì´Ø¿ô = ÊÑ·ÁÍýÏÀ¤ÎÏÃÂ꤫¤é = 1991(Ê¿À®3) ÆüËÜ¿ô³Ø²ñ 1991 April ·ÄØæµÁ½ÎÂç³Ø ÆÃÊÌ¹Ö±é ³ª¹¾¹¬Çî Birman-Wenzl-Murakami Âå¿ô¤Îɽ¸½¤Î¹½À®Ë¡(È¡¿ô²òÀϳØ) Âè30²ó¼ÂÈ¡¿ôÏÀ¡¦Âè29²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1991.July17-19) ÂçºåÉÜΩÂç³Ø(¾¶) ¼ã»³Àµ¿Í Î̻ҷ²¾å¤Î¡ÈÄê¿ô·¸¿ôÈùʬºîÍÑÁÇ" ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÅù¼Á¶õ´Ö¾å¤Î·²¤Îɽ¸½¤Ë´Ø¤¹¤ëºÇ¶á¤ÎÏÃÂê¡×1991.July 23-26 (À¾»³ µýÂåɽ) O.Mathieu Bicontinuity of the Dixmier map ²Ïź ·ò A relation between the logarithmic derivatives of Riemann and Selberg zeta functions and a proof of the Riemann hypothesis under an assumption on a discrete subgroup of SL(2,R) ËÙ Àµ Andrianov's L-functions associated to Siegel wave forms of degree two ݯËÜÆÆ»Ê Extension of Jones' projections ¾åÌî·ò¼¤ Infinitesimal deformation of principal bundles, determinant bundles and sffine Lie algebras K.C.Misra ¹õÌÚ ¸¼ Fock space representations of twisted affine Lie algebras ¾¾Èø ¸ü ÂÓµå´Ø¿ô¤Ë´Ø·¸¤¹¤ë²ÄÀÑʬÀܳ¤Ë¤Ä¤¤¤Æ ÆâÆ£ Áï Kostant's formula for a certain class of generalized Kac-Moody algebras II ϲÀɧ ̵¸Â¼¡¸µ¥°¥é¥¹¥Þ¥ó¿ÍÍÂΤòÍѤ¤¤¿¥â¥¸¥å¥é¥¹¶õ´Ö¤Î¹½À® B.L.Feigin Representations of Kac-Moody algebras for critical value of central charges »³º¬¹¨Ç· (Restricted)quantized enveloping algebras of simple Lie superalgebras and universal R-matrices ±§Âô ã Real moment maps ¶¶ËÜδ»Ê¡¦ß·¹¾Î´°ì A construction of solution of the Ernst equations Êö¼¾¡¹° Åù¼Á¥Ù¥¯¥È¥ë«¤ÎµåÀÚÃÇ ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñÆÃÊֱ̹é Ë̳¤Æ»Âç³Ø ¶¶ÄÞƻɧ ¥°¥é¥Õ¤Î¥¹¥Ú¥¯¥È¥ë´ö²¿¡½¡½¥»¥ë¥Ð¡¼¥°·¿À׸ø¼°¤È¤½¤Î±þÍÑ (Âå¿ô³Ø) ÇßÅÄ µü 100ǯÌܤΠCapelli identity(È¡¿ô²òÀϳØ) ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1991.Nov.23-26)»°Ä«²¹Àô²ñ´Û À¤Ïÿͼ㻳Àµ¿Í ¿ù±º¸÷É× The Origins of Infinite Dimensional Unitary Representations of Lie Groups Íî¹ç·¼Ç· Character and Character Cycle ºØÆ£ ËÓ Parameter Shift in Normal Generalized Hypergeometric Systems Ìî¼δ¾¼ Manifold of primitive idenpotents in a Jordan-Hilbert algebra »³¾å ¼¢ Frobenius Reciprocity in Operator Algebra ´¢»³ÏÂ½Ó Character Formula for Cuspidal Unramified Series Representations of the Multiplicative Group of Division Algebra over Local Field ¿¥Åŧ¹¬ Cohomology of Discontinuous Subgroups of Q-rank 1 in Sp4( R ) (joint work with J.Schmermen) ¾®ÌÚÁ¾³ÙµÁ ¤¢¤ë¼ï¤Î¡Èq-³µ¶Ñ¼Á¶õ´Ö"¤Î°ì¹Í»¡¤Ë¤Ä¤¤¤Æ(ÁýÅÄůÌé¤È¤Î¶¦Æ±¸¦µæ) ¹õÀîµ®»Ê Âоζõ´Ö¾å¤ÎÉÔÊÑÈùʬºîÍÑÁǴĤˤĤ¤¤Æ »³ÅÄ͵»Ë Hall-Littlewood ¿¹à¼°¤È¥½¥ê¥È¥óÊýÄø¼°¤Ë´Ø¤¹¤ëÃí°Õ »°Ä®¾¡µ× Yang-Baxter ÊýÄø¼°¤Èq-º¹Ê¬ÊýÄø¼° ¸¦µæ½¸²ñ¡ÖÉÔÊѼ°ÏÀ¤Î¿·¤·¤¤Î®¤ì¡×1991 Dec 16-18 ÂçºåÂç³Ø À¤ÏÿÍëºê½ÓÇ· ÇßÅÄ µü ÉÔÊѼ°¤ÈÁÐÂÐÀ ËÙÅÄÎÉÇ· Equivariant D-modules --- examples ¼ã»³Àµ¿Í Î̻ҷ²¾å¤ÎÄê¿ô·¸¿ôÈùʬºîÍÑÁǤÎƳÆþ¤È Capelli ¹±Åù¼° »°Ä®¾¡µ× Holonomic q-difference systems and Yang-Baxter equation ¹õÌÚ ¸¼ Applications of the Fock space representations of twisted affine Lie algebras ÄÍÅĽÕͺ ĺÅÀºîÍÑÁÇÂå¿ô¤Ë¤Ä¤¤¤Æ ¹Ô¼ÔÌÀɧ ÉÔÊѼ°ÏÀ¤Ë¤ª¤±¤ë¤¤¤¯¤Ä¤«¤ÎÏÃÂê ´Ø¸ý¼¡Ïº ȽÊ̼°¤ÎÊ£ÁÇ¥Ù¥¤ÈÂÓµå´Ø¿ô¤Î¹½À® ÌÀµ½Ó ÎÌ»ÒÅù¼Á¶õ´Ö¤È Macdonald ¿¹à¼° ¾®¿ÜÅIJí Î̻ҷ²¤Î¤¢¤ë¥Æ¥ó¥½¥ëÀÑɽ¸½¤ÎÃæ¿´²½´Ä 1992(Ê¿À®4) Âè3²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥× Ä»¼èÂç³Ø ¾¾ÌÚÉÒɧ H¡ÀG/P¤Îµ¹æɽ¼¨ ÆâÆ£ Áï GKM algebra¤Ë¤Ä¤¤¤Æ °æ¾å½ç»Ò Lp FourierÊÑ´¹¤Ë¤Ä¤¤¤Æ »Ö¼¹°Ç· Èó²Ä´¹ Hibert¶õ´Ö¤ÎľÀÑʬ¤Ë¤Ä¤¤¤Æ ¼ã»³Àµ¿Í q-analogue of differential operators of constant coefficients »°Ä»Àî¼÷°ì Harish-Chandra ¤ÎPlancherel formula¤Ë¤Ä¤¤¤Æ ¶¶ÄÞƻɧ¡¦»ÔÀî Random walks on distance-regular graphs ÆüËÜ¿ô³Ø²ñ 1991 April Ê¡²¬Âç³Ø Áí¹ç¹Ö±é ÀÄËÜÏÂɧ "Ķ´ö²¿È¡¿ô¡¢¤½¤Î²áµî¡¢¸½ºß¡¢¤½¤·¤Æ¡¦¡¦¡¦" Âè31²ó¼ÂÈ¡¿ôÏÀ¡¦Âè30²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1992.July12-14) =@ÅìµþÍý²ÊÂç³Ø (¾¶) À¾»³ µü ÈùʬºîÍÑÁǤˤè¤ë¥ê¡¼´Ä¤Îɽ¸½¤Î¼Â¸½ ÃæΤ Çî ¥ê¡¼Âå¿ô¤Î*-ɽ¸½¤ÎÀÑʬ²ÄǽÀ¤Ë¤Ä¤¤¤Æ ¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½ÏÀµÚ¤ÓÅù¼Á¶õ´Ö¾å¤Î²òÀÏ¡×1992.July.21-24 (ÌÚȨÆƹ§Âåɽ) »³²¼ Çî Some aspects of representations and algebraic geometry of Lie algebras º´Ìî ÌÐ Âоζõ´Ö¤Ë¤ª¤±¤ë Derived Character ¤ÈĴϲòÀϤؤαþÍÑ ¶¶ËÜδ»Ê Kirillov-Kostant theory and Feynman path integrals on coadjoint orbits of certain real semisimple Lie group ß·¹¾Î´°ì A relation between the conformal factor in the Einstein's vacuum equations and the central extension of a formal loop group Ê¿°æ Éð ²ÄÈùʬ¼ÌÁü·²µÚ¤Ó̵¸ÂÂоη²¤Î¥æ¥Ë¥¿¥êɽ¸½¤Ë¤Ä¤¤¤Æ °Ëã±Ùϯ¡¦¿ÀÊÝÆ»Éס¦Èø³ÑÀµ¿Í Crystal base and q-vertex operators ĹëÀî¹À»Ê Crossing symmetry in elliptic solutions of the Yang-Baxter equation and a new L-operator for Belavin's solution ã·Æ£ ËÓ Holonomicity and irregularity of inhomogeneous generalized hypergeometric systems º´¡¹ÌÚÉ𡦹⻳¿®µ£¡¦µÈÅÄÀµ¾Ï¡¦¾¾ËÜ·½»Ê Monodromy of the hypergeometric differential equation of type (k,n) ´î¿ÄÌÉð On the Wronskian of the hypergeometric functions of type (n+1,m+1) ¶â»Ò¾ù°ì q-Selberg ÀÑʬ¤È Macdonald ¿¹à¼° »°Ä®¾¡µ× Holonomic q-difference system of the first order associated with a Jackson integral of Selberg type ´Ø¸ý±Ñ»Ò Ⱦñ½ãÂоζõ´Ö¤Î Casimir ºîÍÑÁǤÎÆ°·ÂÀ®Ê¬ ÆâÆ£ Áï Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras Âè37²óÂå¿ô³Ø¥·¥ó¥Ý¥¸¥¦¥à 1992 July 28-31 ̾¾ëÂç³Ø ¼ã»³Àµ¿Í Î̻ҷ²¾å¤ÎÈùʬ³Ø¤È¤½¤Î±þÍÑ ÈôÅÄÉ𹬡¢º´Æ£Ê¸¹¡¢·óÅÄÀµ¼£Â¾ ¸¦µæ½¸²ñ¡Ö¸½¾Ý¤È¤·¤Æ¤ÎÁÐÂÐÀ¡×(1992 Aug 4-6)È¡´ÛÅò¥ÎÀî²¹Àô˧ÌÀÁñ ÇßÅÄ µü ÁÐÂÐÀ¤È¤¤¤¦¸½¾Ý À¹ÅÄ·òɧ ¥é¥ó¥À¥à¤Ê¸½¾Ý¤Ë¤ª¤±¤ëÁÐÂÐÀ º´Æ£Ê¸¹ ÁÐÂÐÀ¤ò±Û¤¨¤¿´Ø¿ôÅù¼° ϲÀɧ Èó²Ä´¹²½¤Ëȼ¤¦ÁÐÂÐÀ¤Î¤¢¤ê¤«¤¿ Íî¹ç·¼Ç· Duality ¤È Symmetry ¹â»³¿®µ£ ÅÀ½¸¹ç¤Î·×»»´ö²¿³Ø µÈÅÄÀµ¾Ï¡¦¾¾ËÜ·½»Ê Gauss-Schwarz ÍýÏÀ¤Ï¡¢¤É¤¦¤¤¤¦ÁÐÂÐÀ¤Ê¤Î¤« ¹õÀî¿®½Å ¾ì¤È¥¼¡¼¥¿=¸ßÀ¤Î¸«ÃϤ«¤é= ÌÊë°ÂÃË Í¸ÂÁÐÂÐÀ¤È̵¸ÂÁÐÂÐÀ¤Î¸ò¤ï¤ê ÆüËÜ¿ô³Ø²ñ 1992 Oct ̾¸Å²°Âç³Ø ÆÃÊÌ¹Ö±é ²ÏÌî½Ó¾æ ¶¦·Á¾ìÍýÏÀ¤Ë¤ª¤±¤ë modular ·²¤Îɽ¸½¤È¤½¤Î±þÍÑ(Âå¿ô³Ø) »°Ä®¾¡µ× Correlation functions associated with a q-Selberg integral(È¡¿ô²òÀϳØ) ¸¦µæ½¸²ñ¡ÖÎ̻ҷ²¤È¤½¤Î¼þÊÕ¡×(1992 Oct.3-5)̾¸Å²°Âç³Ø ½ÂÀîÍÛ°ì Completely Z symmetric R matrix ĹëÀî¹À»Ê Yang-Baxter ÊýÄø¼°¤Î Belavin ²ò¤ËÉտ魯¤ë Hopf Âå¿ô¤ò¹½À®¤¹¤ë¤¹¤ë»î¤ß ÉðÉô¾°»Ö Generalized 8 vertex model associated to Sklyanin algebra ÀÄËÜÏÂɧ¡¦²Ãƣ˧ʸ Connection coefficients for A-type Jackson integral and Yang-Baxter equation »§Ëà½çµÈ¡¦³á¸¶·ò»Ê Î¥»¶·Ï¤ª¤è¤Ó q-Î¥»¶·Ï¤Ë¤ª¤±¤ë²ÄÀÑʬ·Ï »³ÅÄÂÙɧ On the q-vertex operator for Uq(sl2) ¿ÀÊÝÆ»É× Quantum affine symmetry in lattice models ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1992.Nov.29-Dec.2)»³·Á¸üÀ¸Ç¯¶âµÙ²Ë¥»¥ó¥¿¡¼ À¤ÏÃ¿Í Ä¹Ã«Àî¹À»Ê ÌÀµ½Ó¡¦ÇßÅĵü¡¦¼ã»³Àµ¿Í Î̻ҷ²ÈÇdual pair (sl2,on)¤È¤½¤Î Capelli Identity M.Nazarov Yangian of the queer Lie superalgebras ÃæÅç ·¼ Instantons on ALE spaces and canonical bases äª ÃÎÇ·¡¦ÁýÅÄůÌ顦¾åÌî´î»°Íº Spectral analysis of a q-difference operator which arises from the quantum SU(1,1) group ¹¾¸ýÀµ¹¸.ÏÂÅÄÎûҡ¦µÜËÜËãÍý¡¦¾®Àô ¿ On the Harish-Chandra C-function for SU(n,1) ¼¨Ìî¿®°ì The Plancherel formula for spherical functions with a one dimensional K-type on a simply connected simple Lie Group of Hermitian type »ûÅĽç»Ò Lie superalgebra ¤Îɽ¸½¤È cohomology ÃÓÅÄ ÊÝ p¿ÊÂå¿ô·²¤Îɽ¸½ÏÀÆþÌç ÈÓÅÄÀµÉÒ On the orbit decomposition of some affine symmetric spaces Åì ¿´°ì On a representation of the algebra of invariant differential operators on a homogeneous vector bundle ÅÏÊÕ¿°ì Affine base space G/N ¾å¤ÎÈùʬºîÍÑÁǴĤȤ½¤ÎWeyl¼«¸ÊƱ·¿ 1993(Ê¿À®5) ¸¦µæ½¸²ñ¡ÖSL2¡×¤Î´ö²¿ ÇßÅÄ µü SL2¤ÈÌ¡Ê⡽MUMBULING ON SL2 ¾åÅÄ ¾¡ µõ¿ô¾èË¡ÏÀ¤È reciprocity law ²ÏÌî ÌÀ Witten ¤Î index theorem ¤Ë¤Ä¤¤¤Æ ²ÏÌî½Ó¾æ¡¦¹âÅÄÉҷá¦ÏµװæÆ»µ× Representations of modular groups in conformal field theory and 3-manifold invariants ¸¶ÅĹ̰ìϺ SL(2,Z) and the monster simple group À¾ÅĸãϺ ¥Û¥â¥È¥Ô¡¼ÏÀ¤«¤é¸«¤¿ÊÝ·¿·Á¼° ÅÄÊÕÍýÀµ ͸·²¤ÎʬÎà¶õ´Ö¤Î elliptic cohomology ¤È Thompson series ¤Î p-adic analogue ²ÃÆ£¹¸»Ê conformal field theory ¤È A-D-E classification ÆüËÜ¿ô³Ø²ñ 1993 March Ãæ±ûÂç³Ø ÆÃÊֱ̹é Ìî¼δ¾¼ Jordan Âå¿ô¤È²òÀϳØ(È¡¿ô²òÀϳØ) R.Howe Multiplicity-free actions in invariant theory(È¡¿ô²òÀϳØ) ¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡Ö¸Åŵ·²¡¦Hecke´Ä¤Îɽ¸½ÏÀ¤ÈÁȹ礻ÏÀ¡× 1993 May 24-28 (»ûÅÄ »êÂåɽ) ÇßÅÄ µü Classical and quantum spherical harmonics ¼ã»³Àµ¿Í Quantum dual pair ¤È Capelli ¹±Åù¼° R.Howe Multiplicity-free action and tensor product ¾®ÎÓ½Ó¹Ô Holomorphic discrete series ¤ÎÆþÌç ÍÌÚ ¿Ê Higher Specht polynomials À®À¥ ¹° Hecke ´Ä¤Î Specht module ¤È cell ɽ¸½¤Î´Ø·¸ ²ÃÆ£¿®°ì Hecke ´Ä¤È R ¹ÔÎó ·óÅÄÀµ¼£ rank 1 ¤Î quantum algebra ¤Î cohomology ¤Î·×»»¤Î¼ÂºÝ ²¬ÅÄÁï°ì Reflection-extensions of fusion algebras ÌÀµ½Ó Uq(g) ¤ÎÃæ¿´¸µ¤ÎÆ°·ÂÀ®Ê¬¤È Macdonald ¤Î q º¹Ê¬ºîÍÑÁÇ Âè32²ó¼ÂÈ¡¿ôÏÀ¡¦Âè31²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à 1993 July 14-16 ¹ÅçÂç³Ø (¾¶) ÅÚ°æ±Ñͺ ¿¹à¼°¤Î¶Ò¤Ë´ØÏ¢¤·¤¿¥Õ¥é¥¯¥¿¥ë¤Ë¤Ä¤¤¤Æ Íî¹ç·¼Ç· ¥é¥ó¥¯2¤Î²Ä´¹¤ÊÈùʬºîÍÑÁǷϤˤĤ¤¤Æ ¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö¥ê¡¼·²¤Î¹½Â¤¤Èɽ¸½¤Ë´Ø¤¹¤ë½ôÌäÂê¡×1993.July26-29 (¾¾ÌÚÉÒɧÂåɽ) ¹Ô¼ÔÌÀɧ Highest weight modules and b-functions of semi-invariants »³ËÜÆØ»Ò È¾Ã±½ã¥ê¡¼·²¤Î leading exponent ¤Îµ½Ò µÆÃÓ¹îɧ ¶ÒÎíLie·²¤ËÉտ魯¤ë Gelfand ÂÐ °¤Éô¹Í½ç¡¦²£ÅÄ°ìϺ ¥³¥ó¥Ñ¥¯¥ÈÂоζõ´Ö¤ÎÂÎÀÑ ¾¾ÌÚÉÒɧ Âå¿ô·²¤Î2¤Ä¤Î involution ¤Ë´Ø¤¹¤ëξ¦¾ê;Îàʬ²ò ÀÄÌÚ ÌС¦²ÃÆ£Ëö¹ U(n,n)/GL(n,C)¾å ¤ÎÉÔÊѸÇÍĶ´Ø¿ô¤ÎÀܳ¸ø¼°¤Ë¤Ä¤¤¤Æ ¼¼ À¯Ï Îã³°·¿E7¤ÎºîÍѤ¹¤ë³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤ÎÆðÛÉÔÊÑĶ´Ø¿ô ÈøȪ¿ÌÀ Towards harmonic analysis on Gaussian space ¶¶ËÜδ»Ê¡¦ß·¹¾Î´°ì A central extension of a formal loop group ÆâÆ£ Áï Towards the Kazhdan-Lusztig multiplicity formula for generalized Kac-Moody algebras NUS-JSPS Seminar on Representation Theory and Number Theory(1993.Nov.1-4) ÅìµþÂç³Ø ÂçÅçÍøͺ Continuous famillies of differential operators with symmetries TAN Eng Chye On the infinitesimal structures of some degenerate principal series representations ¾®ÎÓ½Ó¹Ô Discontinuous groups for pseudo-Riemannian homogeneous spaces ±§Âô ã Moment maps for non-symplectic manifolds, a theorem of Borovoi, and convexity theorems À¾»³ µý p+-homologies of highest weight modules and their restrictions ZHU Chengbo On the decay of matrix coefficients of exponential groups ¼ã»³Àµ¿Í Toward an invariant theory for the quantum group symmetry YOU Yuching On the 2-component KP hierarchy PENG Tsu Ann Construction of prime tables ÃæÅç¾¢°ì On Gauss sum characters of finite groups LIM Chong Hai Congruence subgroups of the Hecke group ¿¥Åŧ¹¬ Whittaker functions on Sp(2,R) LING San Kernels of degeneracy map between Jacobian of modular curves Æ£¸¶°ì¹¨ WENG Lin A definition of higher arithmetic K-group CHAN Shih Ping Associated orders of Lubin-Tate extensions ¹õÀî¿®½Å Zeta functions and multiple sine functions ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1993.Nov.23-26)°ËƦǮÀî¥Ï¥¤¥Ä À¤ÏÃ¿Í ¾®ÃÓÏÂɧ ·§¸¶·¼ºî On non-unitary representations of the Heisenberg group ÅÏÉô ÈË Generating functions and integral representations for the spherical functions on some classical Gelfand pairs ¿ùëůÌé Î̻ҵåÌ̾å¤Î differential ¤È q-Jacobi ¿¹à¼° ¾®ÎÓ½Ó¹Ô È¾Ã±½ã¥ê¡¼·²¤Î¥æ¥Ë¥¿¥êɽ¸½ÏÀÆþÌ硽¡½Vogan-ZuckermanƳÍèÈ¡¼ê,Î¥»¶Åª¤Ê¥æ¥Ë¥¿¥êɽ¸½¡½¡½ ²¼Â¼¹¨¾´ Configulation space ¾å¤Î measure space ¤È Poisson measure ¤«¤éÀ¸À®¤µ¤ì¤¿ diffeomorphism ¤Î·²¤Îɽ¸½ »³²¼ Çî Gradient ·¿ÈùʬºîÍÑÁÇ,¤Ù¤Îí¶¦ÌòÎà¤ÈȾñ½ã¥ê¡¼·²¤Îɽ¸½¡½¡½Î¥»¶·ÏÎóɽ¸½¤ò¼´¤È¤·¤Æ¡½¡½ 1994(Ê¿À®6) Âè4²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥× 1994 Jan.7-8 ÇßÅÄ µü (GLn,GLm)-duality »³º¬¹¨Ç· Levendorskii-Soivelman ¤Î¾Ò²ð ÂçÅçÍøͺ ÂоÎÀ¤ò»ý¤Ä´°Á´ÀÑʬ²Äǽ¤ÊÎϳطϵڤÓÎ̻ҷÏI ÀÖ°æ °ï ÎÌ»ÒÏÀ¤ÎÌëÌÀ¤± ¿ÜÆ£À¶°ì GKM-algebra ¤Î´ú¿ÍÍÂÎ Íî¹ç·¼Ç· ÂоÎÀ¤ò»ý¤Ä´°Á´ÀÑʬ²Äǽ¤ÊÎϳطϵڤÓÎ̻ҷÏII ÆüËÜ¿ô³Ø²ñ 1994 April ¿À¸ÍÂç³Ø ÆÃÊÌ¹Ö±é ¹Ô¼ÔÌÀɧ ³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤ÎÍýÏÀ¤ÎºÇ¶á¤ÎȯŸ(Âå¿ô³Ø) ¶¶ÄÞƻɧ ̵¸Â¥°¥é¥Õ¤Î¹½Â¤¤È¥¹¥Ú¥¯¥È¥ë(È¡¿ô²òÀϳØ) ¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡Ö̵¸Â¼¡¸µ¶õ´Ö¾å¤Î¬ÅÙÏÀ¡¢Ìµ¸Â¼¡¸µ·²¤Îɽ¸½µÚ¤Ó´ØÏ¢¤·¤¿ÏÃÂê¡×(1994 May 17-19) »³ºêÂÙϺÂåɽ äÇϿɧ Èó²ÄʬÀ¤Î¼è°·¤¤¤Ë¤Ä¤¤¤Æ ²Ïî´ ½ß °ìÍͶõ´Ö¾å¤Î¿ä°Ü³ÎΨ¤ÎƱÄøÅÙ°ìÍÍϢ³À ÃÝÃæÌÐÉ× °ÂÄê·¿³ÎΨ¾ì¤È¤½¤Î·èÄêÀ ²£°æ²Å¹§ ̵¸Â¼¡¸µ Bargmann ¶õ´Ö¤È white noise ÈÆ´Ø¿ô¤Î¶õ´Ö ÈøȪ¿ÌÀ Fock ¶õ´Ö¾å¤ÎÎ̻ҳÎΨ²áÄø¡½¥Û¥ï¥¤¥È¥Î¥¤¥º¤Î´ÑÅÀ¤«¤é Ìø¸¦ÆóϺ ̵¸Â¼¡¸µ¶õ´Ö¾å¤Î¬Å٤ȾðÊóÍýÏÀ ¿åÄ® ¿Î¡¦º´Æ£ ô ·²ºîÍѤˤè¤ë¬ÅÙ¤ÎϢ³À ¹â¶¶ÂÙ»Ì Some results on Bochner-type theorem ²¬ºê±ÙÌÀ Minlos ¤ÎÄêÍý¤ÎµÕ »³ºêÂÙϺ¡¦»³ºê°¦°ì On the gap distribution of prime numbers ƶ ¾´¿Í ¥ê¡¼´Ä¤Îɽ¸½¤Î¥Æ¥ó¥½¥ëÀѤÎʬ²ò¤«¤éÀ¸¤¸¤ë¥é¥ó¥À¥à¥¦¥ª¡¼¥¯¤Ë¤Ä¤¤¤Æ À¾»³ µý ¥Ù¥¯¥È¥ë¾ì¤Î¤Ê¤¹ Lie ´Ä¤Î¼«Á³É½¸½¤È¤½¤Î¥Æ¥ó¥½¥ëÀÑɽ¸½¤Ë¤Ä¤¤¤Æ Ê¿°æ Éð ·²¤Îɽ¸½¤È½àÉÔÊѬÅÙ ºùËÜÆÆ»Ê Index for factors generated by direct sums of II1 factors ²¼Â¼¹¨¾´ Configuration space ¾å¤Î measure ¤Î¥¨¥ë¥´¡¼¥Éʬ²ò Âè32²óÈ¡¿ô²òÀϳØʬ²Ê²ñ¥·¥ó¥Ý¥¸¥¦¥à(1994.July25)ÄÅÅĽÎÂç³Ø ÂçÅçÍøͺ ´°Á´ÀÑʬ²Äǽ¤ÊÎÌ»Ò·Ï ¿ÀÊÝÆ»É× Î̻ҲÄÀÑʬ·Ï¤Î¾õÂÖ¶õ´Ö Âè33²ó¼Â´Ø¿ôÏÀ¡¦È¡¿ô²òÀϳإ·¥ó¥Ý¥¸¥¦¥à(1994.July25-27) ÄÅÅĽÎÂç³Ø (¾¶) °æ¾å½ç»Ò ²Ä²òLie·²¤Îñ¹àɽ¸½¤È¤¢¤ë¼ï¤ÎÁê¸ßΧ¤Ë¤Ä¤¤¤Æ ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÅù¼Á¶õ´Ö¾å¤ÎÈó²Ä´¹²òÀϳء×1994.Aug.2-5(»³ÅÄ͵»ËÂåɽ) ¾¾ß·½ß°ì E6·¿¶ËÂç¥È¡¼¥é¥¹Éôʬ·²¤È3¼¡¸µ¶ÊÌÌ ÎÓ ¹§¹¨ II1·¿°ø»Ò´Ä¤Î¥¬¥í¥¢Î̻ҷ² ¾åÌî´î»°Íº¡¦À¾ß·Æ»ÃÎ Î̻ҷ²¤È¥¼¡¼¥¿È¡¿ô ÂçÅçÍøͺ ºÂɸÂоÎÀ¤ò¤â¤Ä´°Á´ÀÑʬ²Äǽ¤ÊÎÌ»Ò·Ï Çð¸¶Àµ¼ù¡¦Ã«ºê½Ó¹Ô Kazhdan-Lusztig conjecture for Kac-Moody Lie algebras I,II ë¸ý·òÆó Minimal K-type Whittaker functions of discrete series of some R-rank 1 Lie groups µÆÃÓ¹îɧ ²Ä²ò Lie ·²¾å¤ÎKµåÈ¡¿ô¤ÎÀµÄêÃÍÀ ¾¾ÌÚÉÒɧ Âå¿ô·²¤Î2¤Ä¤Î Involution ¤Ë´Ø¤¹¤ëξ¦¾ê;Îàʬ²òII ÌÀµ½Ó¡¦¿ùëůÌé ¸Åŵ·¿ÂоÎÂФÎÎ̻Ҳ½¤Èq-ľ¸ò¿¹à¼° ÃÓÅÄ ³Ù ¶¦·Á¾ì¤Î¥³¥»¥Ã¥È¹½À® ¾®Ìº°ìÆÁ¡¦²¬ËÜÀ¶¶¿¡¦¿ûÌî¹ÀÌÀ¡¦ÉÍÅĸ÷¿Í¡¦¸Í±Ûͺ°ìϺ Kirillov-Kostant ÍýÏÀ¤Ë¤è¤ë Kac-Moody Lie ·²¤Îɽ¸½¤Î Feynman ·Ð Ï©ÀÑʬ¤Ë¤è¤ë¹½À® ¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡Ö¥à¡¼¥ó¥·¥ã¥¤¥ó¤ÈĺÅÀºîÍÑÁÇÂå¿ô¡×(1994 Sept 5-9) µÜËܲíɧÂåɽ Chogying Dong Introduction to vertex operator algebra I Hai-sheng Li Introduction to vertex operator algebra II Yi-Zhi Huang Introduction to vertex operator algebra III Koichiro Harada¡¦Mong Lung Lang Modular forms associated with the monster module Bong H.Lian¡¦Gregg J.Zuckerman Moonshine cohomology Victor G.Kac¡¦Seok-Jin Kang ¼¡¿ôÉÕ¤¥ê¡¼Âå¿ô¤ËÂФ¹¤ë¥È¥ì¡¼¥¹¸ø¼°¤È¥â¥ó¥¹¥È¥é¥à¥¹¡¦¥à¡¼¥ó¥·¥ã¥¤¥ó ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñÆÃÊֱ̹é1994.Sept.Åìµþ¹©¶ÈÂç³Ø »³¾å ¼¢ Tensor categories in operator algebras(È¡¿ô²òÀϳØ) ÆâÆ£ Áï ¥à¡¼¥ó¥·¥ã¥¤¥ó²Ã·²¤È generalized Kac-Moody algebraska (È¡¿ô²òÀϳØ) ²Ïź ·ò Wavelet ÊÑ´¹¤È·²¤Îɽ¸½ÏÀ¡½È¾Ã±½ã Lie ·²¤Î¼ç·ÏÎóɽ¸½¤òÍѤ¤¤¿³ÈÄ¥(¼ÂÈ¡¿ôÏÀ) Âè30²óɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1994.Nov.16-19)¸â±©¥Ï¥¤¥Ä À¤ÏÿÍÀ¾»³ µý ºØÆ£¶³»Ê ͸ÂÀ¸À®·²¤Î SL2, GL2 ¤Ø¤Îɽ¸½¤Î characteristic variety /Z ¾®ÎÓ½Ó¹Ô ¶ÊÌ̤ÎÀÑʬ´ö²¿¤ÈÊ£ÁÇÅù¼Á¶õ´Ö¤Î Plancherel ·¿ÄêÍý G.Schiffmann ¹â¶¶Å¯Ìé p-¿ÊÂξå¤Î GLn ¤Î´ûÌó supercuspidal ɽ¸½¤È¤½¤Î»Øɸ ·§¸¶·¼ºî On Hardy-Littlewood-Paley space on Riemannian symmetric spaces Ê¡Åç±äµ× Chiral Potts ÌÏ·¿¤ËÉտ路¤¿Âå¿ô¤ÈÎ̻ҷ² ÅÄÃæ½ç»Ò Lie superalgebra sl(2,1) ¤Î homology ²¬ÅÄÁï°ì Littlewood-Richardson ring for Hecke, Brauer, BMW algebras »°Ä®¾¡µ× Macdonald polynomial as a vector valued character of quantized universal enveloping algebra Un(gl(n)) ´¢»³ÏÂ½Ó 4¸µ¿ôÂξå¤Î unitary ·²¤Î tamely ramified supercuspidal ɽ¸½¤Ë¤Ä¤¤¤Æ ¼ã»³Àµ¿Í ¸¶»ÏŪÀ׸ø¼°¤Î±þÍÑ ¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ ÇßÅÄ µü Dual pairs from the quantum invariant theoretic point of view ÀÐÀî²íͺ Minor summation formulas of Pfaffians and its applications to Schur functions type identities M.Dijkhuizen (1+n)-parameter deformation of classical symmetric space: a survey of results and open problems G.Olshanski Harmonic analysis on infinite symmetric groups ²¬ÅÄÁï°ì Application of minor summation formula to rectangular shaped representations of classical groups ¿ùëůÌé Quantum analogue of hypergeometric system associated with Grassmannian Ek,n G.Olshanski Representations of infinite dimensional classical groups and the infinite symmetric group Àî±Û Fusion algebras and knots in solid torus 1995(Ê¿À®7) Âè5²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥× 1995 jAN.8-10 ²Ïź ·ò Wavelet ÊÑ´¹¤Èɽ¸½ÏÀ ¾®ÎÓ½Ó¹Ô Î¥»¶·²¤ÎÅù¼Á¶õ´Ö¤Ø¤ÎºîÍѤ¬¸ÇÍÉÔϢ³¤Ë¤Ê¤ë¤¿¤á¤ÎȽÄê¾ò·ï ¼¨Ìî¿®°ì Boundary value problems for the Shilov boundary of a bounded symmetric doman of yube type Ìî¼δ¾¼ Bochner-Hecke Åù¼°¤Î¼þÊÕ ¶¶ÄÞƻɧ On generalized association schemes ¾¾ÌÚÉÒɧ Âå¿ô·²¤ÎÆó¤Ä¤Î involution ¤Ë´Ø¤¹¤ëξ¦¾ê;Îàʬ²ò »³º¬¹¨Ç· A1(1) ·¿Î̻ҷ²¤Î¤¢¤ë¼ï¤Î¥«¥·¥ß¡¼¥ë¸µ¤Ë¤Ä¤¤¤Æ µÆÃÓ¹îɧ ²Ä²ò¥ê¡¼·²¾å¤Î K µåÈ¡¿ô¤È´ûÌó¥æ¥Ë¥¿¥êɽ¸½¤Î¹ÔÎóÀ®Ê¬ ·§¸¶·¼ºî ¤Ù¤Îí¥ê¡¼·²¤ÎÈó¥æ¥Ë¥¿¥êͶƳɽ¸½¤Ë¤Ä¤¤¤Æ ¶¶ËÜδ»Ê Virasoro ºîÍÑÁǤÎÀ¸À®¤¹¤ë one-parameter ·² ß·¹¾Î´°ì On p-adic analysis »°Ä»Àî¼÷°ì ¹ÔÎó´Ä¤Î Dirichret µé¿ô¤Ë¤Ä¤¤¤Æ ÀÐÀî²íͺ Pfaffian ¤È»Øɸ¸ø¼° ²¬ÅÄæâ°ì Minor summation formula ¤Î±þÍÑ ¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖSp(2,R) ¤È SU(2,2) ¾å¤ÎÊÝ·¿·Á¼°¡×(1995 Jan 9-13) ¿¥Åŧ¹¬Âåɽ À¾»³ µý Ⱦñ½ã Lie ·²¤Î standard ɽ¸½ÆþÌ硽Sp(2,R) ¤È SU(2,2) ¤òÃæ¿´¤Ë¡½ »°¾å½Ó²ð »Øɸ¤ÈÉÔÊѸÇÍĶ´Ø¿ô ¿¥Åŧ¹¬ Toward wave models of representations of real semisimple Lie groups ÁáÅŧÇî Differential equations for principal series Whittaker functions µÜºêÂöÌé Sp(2,R) ¤ÎµöÍÆɽ¸½¤ËÂФ¹¤ë generalized Bessel function ¤Ë¤Ä¤¤¤Æ ÈÓÅÄÀµ½Ó Matrix coefficients of the principal series representations of Sp(2,R) as hypergeometric functions of C2-type ¿¥Åŧ¹¬ Matrix coefficients of the large discrete series representations of Sp(2,R) as hypergeometric series of two variables ë¸ý·òÆó Discrete series Whittaker functions of SU(N,1) ÅÔÃÛÀµÃË SU(2,1) ¾å¤Î¼Â¿·Ã«´Ø¿ô Ê¿²ì °ê SU(2,2) ¤ÎÎ¥»¶·ÏÎóɽ¸½¤Î multiplicity ¤Ë¤Ä¤¤¤Æ º£ÌîÂóÌé U(2,2) ¤Îα¿ô¥¹¥Ú¥¯¥È¥ë ¸Å´Ø½Õδ ÊÝ·¿ L ´Ø¿ô¤È Whittaker ´Ø¿ô(Sp(4) ¤Î¾ì¹ç) ¼À¥ ÆÆ¡¦¿ûÌ»Ë Spherical functions and Rankin-Selberg convolution I Local theory ¼À¥ ÆÆ¡¦¿ûÌ»Ë Spherical functions and Rankin-Selberg convolution II Global theory ÅÏÊÕδÉ× ¥æ¥Ë¥¿¥ê·²¤ÎÊÝ·¿ L ´Ø¿ô¤È¥Æ¡¼¥¿µé¿ô¥ê¥Õ¥È ¹âÌî·¼»ù Standard L-functions for Un,n ¿¥Åŧ¹¬¡¦ÉÍȪ˧µª ¼«ÌÀ¤Êɸ½à°ø»Ò¤ò»ý¤ÄÂå¿ô¶ÊÌ̤Υ⥸¥å¥é¥¤¤ÎĶ±ÛŪ¤ÊÍýÏÀ¤ÎÉü½¬ µÈÅÄÀµ¾Ï ÇÛÃÖ¶õ´Ö¤Î°ì°Õ²½ ¡½Ä¶´ö²¿ÀÑʬ ¾¾ËÜ·½»Ê SU(2,2) ¾å¤Î theta ´Ø¿ô °Ë¿á»³ÃεÁ IV·¿ÂоÎÎΰè¾å¤ÎÀµÂ§ÊÝ·¿·Á¼°¤Î¼¡¸µ¸ø¼° ÂçÅçÍøͺ Ⱦñ½ã Lie ·²¤Î´ûÌóɽ¸½¤Î¼ç·ÏÎóɽ¸½¤Ø¤ÎËä¤á¹þ¤ß ¡½SU(2,2) Åù¤òÎã¤Ë ¾®ÎÓ½Ó¹Ô ¶É½êÂоζõ´Ö¤Î¥³¥Û¥â¥í¥¸¡¼¤È Vogan-Zuckerman ƳÍèÈ¡¼ê²Ã·²ÆþÌç ÆüËÜ¿ô³Ø²ñǯ²ñ1995.MarchΩ̿´ÛÂç³Ø ÆÃÊֱ̹é ÏÆËÜ ¼Â ¥¹¡¼¥Ñ¡¼Âå¿ô¤Îɽ¸½¤È¤½¤ì¤Ë´ØÏ¢¤¹¤ëÏÃÂê Âè34²ó¼Â´Ø¿ôÏÀ¡¦È¡¿ô²òÀϳإ·¥ó¥Ý¥¸¥¦¥à(1995.July 18-20)¡îR·Á»ÔÍ·³Ø´Û¥Û¡¼¥ë (¾¶) ¼¨Ìî¿®°ì Poisson ÀÑʬ¤È Hua ÊýÄø¼° ¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½ÏÀ¤ÈÅù¼Á¶õ´Ö¾å¤Î²òÀϳء×(1995 July 31-Aug 3) ºØÆ£ ËÓÂåɽ ÂÀÅÄÂöÌé ¼ÂÂå¿ô·²¤Îɸ½àɽ¸½¤Î associated variety ¤È¶ÒÎíµ°Æ»¤ÎͶƳ ¼¼ À¯Ï ÂоιÔÎó¤Î¶õ´Ö¾å¤ÎÉÔÊÑĶ´Ø¿ô¤Î·×»» º´Ìî ÌÐ ¥Õ¡¼¥ê¥¨²òÀϤÎÈó²Ä´¹²½¤Ø¤ÎºÇ¶á95ǯ´Ö¤ÎÊâ¤ß ¸ÞÌÀ ÃÒ E8 ·¿Ã±Ï¢·ë¥³¥ó¥Ñ¥¯¥È¥ê¡¼·²¤Î³¬¿ô8¤Î¶ËÂçÉôʬ·²¤Ë¤Ä¤¤¤Æ ´Ø¸ý±Ñ»Ò U(n,n) ¤Î¤¢¤ë´ûÌó¥æ¥Ë¥¿¥êɽ¸½¤Î´ö²¿³ØŪ¼Â¸½¤È¥Ú¥ó¥í¡¼¥ºÊÑ´¹ ÀÐÀî ů ¼ÂÁжʶõ´Ö¾å¤ÎÁ´Â¬ÃÏŪ¥é¥É¥óÊÑ´¹¤ÎÁü¤ÎÆÃħÉÕ¤±¤Ë¤Ä¤¤¤Æ ¹õÌÚ ¸¼ ¶¦·Á¾ìÍýÏÀ¤Ë¸½¤ì¤ëÀþ·ÁÈùʬÊýÄø¼°¤Ë¤Ä¤¤¤Æ ëºê½ÓÇ· ¥¨¥ë¥ß¡¼¥ÈÂоζõ´Ö¾å¤Î Gelfand ·¿Ä¶´ö²¿ÊýÄø¼° Ãæë¼Â¿ Ek,n ¤Î q-analogue ¤Ë¤Ä¤¤¤Æ ĹëÀî¹À»Ê Ruijsenaars ¤Î²Ä´¹º¹Ê¬ºîÍÑÁÇ¤È Yang-Baxter ÊýÄø¼° ÍÌÚ ¿Ê¡¦ÃæÅçãÍΡ¦»³ÅÄ͵»Ë A1(1) ¤Î´ðËÜɽ¸½¤È Littlewood-Richardson ·¸¿ô ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñÆÃÊֱ̹é ÅìËÌÂç³Ø ¿ÀÊÝÆ»É× ³Ê»ÒÌÏ·¿¤Î¸½ºß (̵¸Â²ÄÀÑʬ·Ï) ÅÚ²°¾¼Çî ɽ¸½ÏÀ¤È¾ì¤ÎÎÌ»ÒÏÀ¤È¤½¤·¤Æ¥È¥Ý¥í¥¸¡¼(̵¸Â²ÄÀÑʬ·Ï) ¿¥Åŧ¹¬ °ìÍøÍѼԤ«¤é¸«¤¿¼Â´ÊÌóÂå¿ô·²¤Îɽ¸½ÏÀ ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1995.Dec.12-15 ) ²Æì¸üÀ¸Ç¯¶âµÙ²Ë¥»¥ó¥¿¡¼ À¤ÏÃ¿Í ¿û½¤°ì ÂçÅçÍøͺ Capelli identities, degenerate series and hypergeometric functions µÈ±ÊÅ°Èþ The embeddings of discrete series into some induced representations for an exceptional real semisimple Lie group of type G2 ÈÓÅÄÀµÉÒ Spherical functions of the principal series representations of SL(2,R) ¼¨Ìî¿®°ì Boudary value problems on Hermitian symmetric spaces J.F.van Diejen Algebras of commuting difference operators with applications to orthogonal polynomials in several variables »³ËÜÆØ»Ò Orbits on the flag variety and images of the moment map ¡½¡½For U(p,q) and Sp(p,q)¡½¡½ À¾»³ µý¡¦²¦ ³¤Àô About commutant algebra of Cartan-type Lie superalgebra W(n) Íî¹ç·¼Ç· ¤¢¤ë³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤ÎÉÔÊѼ°ÏÀ »³¸ý ³Ø Ê£ÁǶÀ±Ç·²Gm,p,n¤ÎLittlewood-Richardson ring¤Ë¤Ä¤¤¤Æ ¹ñ¾ìÆØÉ× Quantum Jacobi-Trudi formula for Uq(Br(1)) from analytic Bethe ansatz »°Ä»Àî¼÷°ì On Dirichlet series and regular conjugacy classes in GL(N,Z) ´¢»³ÏÂ½Ó Very cuspidal representations of p-adic symplectic groups 1996(Ê¿À®8) Âè5²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥× ÆüËÜ¿ô³Ø²ñ 1996 April ¿·³ãÂç³Ø ÆÃÊÌ¹Ö±é »°Ä®¾¡µ× A solution to quanrum Knizhnik-Zamolodchikov equations and its application to eigenvalue problems of Macdonald type(È¡¿ô²òÀϳØ) ÌÀµ½Ó Î̻ҷ²¤È q ²òÀÏ(̵¸Â²ÄÀÑʬ·Ï) Âè35²ó¼Â´Ø¿ôÏÀ¡¦È¡¿ô²òÀϳإ·¥ó¥Ý¥¸¥¦¥à(1996.July 22-24) ÆàÎɽ÷»ÒÂç³Ø (¾¶) Ìî¼δ¾¼ Berezin ÊÑ´¹¤È Lie ·²¤Îɽ¸½ ¾¾Ëܵ׵Á Unitary degenerate series of rel reductive groups ¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤ÈÅù¼Á¶õ´Ö¤Îɽ¸½ÏÀ¡×1996.July29-Aug.15(Íî¹ç·¼Ç·Âåɽ) ¹Ô¼ÔÌÀɧ¡¦»³²¼ Çî Associated variety, Kostant-Sekiguchi correspondence, and locally free U(n) action on Harish-Chandra modules »ûÅÄ »ê¡¦È¬É´¹¬Âç Sp(2n,R) ¤ÎÎ¥»¶·ÏÎóɽ¸½¤ÎÁȹ礻ÏÀ ã·Æ£µÁµ× crystal base ¤Î´ö²¿³ØŪ¼Â¸½¤Ë¤Ä¤¤¤Æ ÃæÅç ·¼ Âå¿ô¶ÊÌ̤Υҥë¥Ù¥ë¥È³µ·¿,¥Ï¥¤¥¼¥ó¥Ù¥ë¥°Âå¿ô¤ÈĺÅÀÂå¿ô »³¸ý Çî ¤¢¤ë¼ï¤Î(Èó²Ä´¹)¥³¥ó¥Ñ¥¯¥È·²¾å¤Î F.-M.RieszÄêÍý¤Ë¤Ä¤¤¤Æ ë¸ý·òÆó Weyl ·²ÉÔÊѤÊÈùʬºîÍÑÁǴĤΰì°ÕÀ¤Ë¤Ä¤¤¤Æ ±§Âô ã ¾¾ÌÚÉÒɧ ¥ê¡¼·²¤Î2¤Ä¤Î involution ¤ÎʬÎà¤È¥ë¡¼¥È·Ï ÌÀµ½Ó¡¦»°Ä®¾¡µ× Hecke ´Ä¤Îɽ¸½¤È Selberg ·¿ q ÀÑʬ ºØÆ£¶³»Ê Generalized root systems of Witt index less or equal 2 ¤Þ¤¿¤Ï Product of eta-functions for regular systems of weights ºØÆ£¶³»Ê Elliptic Weyl ·²¤Î Coxeter-like ɽ¼¨ º£ÌîÏÂ»Ò Super Lie algebra sl(m|l) ¤ÎÉÔÊÑ¿¹à¼°¤Ë¤Ä¤¤ ¡½Chevalley ·¿¤ÎÄêÍý ÅÚ²°¾¼Çî ¶¦·Á¾ì, Degenerate Dorulele Affine Hecke Algebra Haldame-Shastly ·Ï ÆüËÜ¿ô³Ø²ñ 1996 Sept ÅìµþÅÔΩÂç Áí¹ç¹Ö±é ÀÄËÜÏÂɧ(ÆüËÜ¿ô³Ø²ñ½©´ü¾Þ) ÆÃÊÌ¹Ö±é ¿¥Åŧ¹¬ ÊÝ·¿¤Î¿ôÏÀ¤Î¤¿¤á¤Î¼ÂĴϲòÀÏ(50¼þǯµÇ°) »³ÅÄ͵»Ë Affine Lie algebras and reduced Schur functions(Âå¿ô³Ø) ¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡Ö¸Åŵ·²¡¦Î̻ҷ²¤Îɽ¸½ÏÀ¤ÈÁȹ礻ÏÀ¡×1996 Oct 28-Nov 1 ÀÐÀî²íͺÂåɽ ¿¹ÅÄ±Ñ¾Ï CL-shellability of ordered structure of reflection systems ¹ñ¾ìÆØÉ× Spectral decomposition of the corner transfer matrices by skew Young diagrams ÍÌÚ ¿Ê TBA ¾®¿ÜÅÄ²í ¥Ø¥Ã¥±¥«¥Æ¥´¥ê¡¼¤Î´ûÌóɽ¸½ ÀÖºäΩÌé Finite-dimensional representations of quantized affine algebras »³º¬¹¨Ç· Ram¤ÎÏÀʸ¤Î¾Ò²ð;BMW-algebra¤Î»Øɸ¤È ¦Ë ring notation ÅÄÀî͵Ƿ A combinatorial formula for Kazhdan-Lusztig polynomials of parabolic type À¾»³ µý GLn¤Îɽ¸½¤ò n ¼¡Âо粤ËÀ©¸Â¤·¤¿¤È¤¤Îʬ²òˡ§ ¹â¶¶ÂçÊå º¹Ê¬ÊýÄø¼°¤«¤é¥»¥ë¥ª¡¼¥È¥Þ¥È¥ó¤òÆÀ¤ë¤Ë¤Ï?ĶΥ»¶²½¤Î´ðÁäȱþÍÑ Ä»µï ¿¿ ¸ÍÅijʻҤȺÇŬ²½ÌäÂê ¡Öɽ¸½ÏÀ¤È¤½¤Î¼þÊÕ¡×(1996 Nov.5-8)ÁÒÉß»Ô ¹ñºÝ³Ø½Ñ¸òή¥»¥ó¥¿¡¼ À¤ÏÃ¿Í ¿ÜÆ£À¶°ì,¼¨Ìî¿®°ì »³ÅĽ¤»Ê ·ë¤ÓÌܤÎÏÃ(»Ò¤Ïï±) ÅÄÀî͵Ƿ Áȹ礻ÏÀŪ»ëÅÀ¤«¤é¤ß¤¿ parabolic type ¤Î Kazhdan-Lusztig polynomial Íî¹ç͵Ƿ Harish-Chandra homomorphism of U(gln) ƶ ¾´¿Í µðÂç¤ÊĺÅÀ¿ô¤Î¥°¥é¥Õ¤Î¾å¤Î¥é¥ó¥À¥à¥¦¥ª¡¼¥¯¤Ë¤ª¤±¤ëÂоÎÀ¤ÈÎ׳¦¸½¾Ý »°Ä®¾¡µ× Macdonald ¤Î¸ÇÍÃÍÌäÂê¤Ë¤ª¤±¤ëÍÍýÈ¡¿ô²ò ¾®ÎÓ½Ó¹Ô Vanishing theorem of modular symbols on locally symmetric spaces ¼ã»³Àµ¿Í Chebotarev equidistribution theorm for holonomies ¿¥Åŧ¹¬ Âè2¼ï¤Îµå´Ø¿ô¤È¥â¥¸¥å¥é¡¼Â¿ÍÍÂΤΥ⥸¥å¥é¡¼Åª°ø»Ò¤Î¥°¥ê¡¼¥ó´Ø¿ô ¾¾ÌÚÉÒɧ Double coset decompositions of Lie groups arising from two involutions Gary Seitz Double cosets in albebraic groups H.Rubenthaler Zeta functions associated to certain families of real symmetric spaces µÜËܲíɧ Vertex operator algebra constructed from Code and its representations ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1996.Nov.19-22 ) °¦Ãθ©³ÛÅÄ·´»°²Ï¥Ï¥¤¥Ä À¤ÏÃ¿Í ²¬ÅÄÁï°ì¡¦ÎÓ ¹§¹¨ À¾»³ µý On Weyl-Schur's duality for Cartan-type Lie (super) algebras Íî¹ç·¼Ç· ÆóÌÌÂ粤ËÉտ路¤¿²ÄÀÑʬ·Ï °ÀÅıѻñ¡¦¾®ÃÝ ¸ç¡¦µ×ÊÝÀ²¿®¡¦ÇòÀÐ ½á°ì Virasoro ·¿Âå¿ô¤È²Ä²òÌÏ·¿ ²ÃÆ£¿®°ì Whittaker - ¿·Ã«´Ø¿ô ¾®ÎÓ½Ó¹Ô ¥æ¥Ë¥¿¥êɽ¸½¤ÎÀ©¸Â¤È¤½¤Î±þÍѤˤĤ¤¤Æ Zhu Chengbo On certain small unitary representations of indefinite orthogonal groups Mathijs S. Dijkhuizen Quantization of Poisson structures on complex Grassmannians and some multidimensional q-Selberg integrals ÍÌÚ ¿Ê Ê£ÁǶÀ±Ç·²¤Î¥Ø¥Ã¥±´Ä¤Îɽ¸½ÏÀ¤Ë¤Ä¤¤¤Æ ¹ÓÀîÃι¬¡¦ÎëÌÚÉð»Ë Double degenerate affine Hecke algebra and K-Z equation µÆÃϹîɧ Jordan 3 ½Å·Ï¤È Heisenberg ·²¾å¤Î K µåÈ¡ ¾®Àô ¿¡¦¹¾¸ýÀµ¹¸ SU(n,1) ¤Î Harish-Chandra c-function ¤Ë¤Ä¤¤¤Æ °æ¾å ½ç»Ò ²Ä²ò Lie ·²¤Î holomorphically induced representation ¡ÖĶ´ö²¿·Ï¥ï¡¼¥¯¥·¥ç¥Ã¥× in ¿À¸Í¡×1996 Dec 2-5 ¿À¸ÍÂç³Ø µÈÅÄÀµ¾Ï ¹¬±¿¤Ë¤â¸«¤Ä¤«¤Ã¤¿°¦¤¹¤Ù¤Èþ¤·¤¤È¡¿ô¤Î¤³¤È Çß¼ ¹À Painleve ÊýÄø¼°¤ËÉտ魯¤ëÆü쿹༰ »³ÅÄÂÙɧ ¶¦·Á¾ìÍýÏÀ¤ÈĶ´ö²¿È¡¿ô ¾®ÅçÉðÉ× ¥Ü¡¼¥º¥¬¥¹¤ÎÁê´ØÈ¡¿ô¤È Painleve ÊýÄø¼° ´Ø¸ý¼¡Ïº ÇÛÃÖ¶õ´Ö¤ÈADE¿ô³Ø ¶â»Ò¾»¿® Ķ´ö²¿¤ÈĶÆðÛÂʱ߶ÊÀþ »Ö²ì¹°Åµ¡¦À®µÜÆÁɧ¡¦ÂçÄÍ ¿¿¡¦¾®ÃÓ·òÆó Report from our down-to-earth working on mirror symmetry of K3 surfaces ÌÀµ½Ó Î̻ҲÄÀÑʬ·Ï¤È affine Hecke ´Ä °ËÆ£²íɧ ¥ë¡¼¥È·Ï¤ËÉտ魯¤ë¥¸¥ã¥¯¥½¥óÀÑʬ¤È¥Ý¥¢¥ó¥«¥ìµé¿ô ¼¨Ìî¿®°ì µåÈ¡¿ô¤ÈĶ´ö²¿È¡¿ô ëºê½ÓÇ· Ķ´ö²¿ÊýÄø¼°¤Î·²ÏÀŪ¹Í»¡ ¿¿Å罨¹Ô ÈóÀƼ¡¹çή·¿Ä¶´ö²¿ÈùʬÊýÄø¼°¤Îȯ»¶²ò¤Î¹½Â¤ ¹â»³¿®µ£ À°¿ô·×²èË¡¤ÈĶ´ö²¿Â¿¹à¼° Âç°¤µ×½Ó§ D²Ã·²¤Îb´Ø¿ô¤ÈÀ©¸Â¤Î·×»»¤Î¥¢¥ë¥´¥ê¥º¥à ¾¾ËÜ·½»Ê ¹çή·¿Ä¶´ö²¿´Ø¿ô¤Ë´Ø¤¹¤ë¸òÅÀÍýÏÀ¤Î´°À®¤Ë¸þ¤±¤Æ »°Ä®¾¡µ× α¿ô²òÀϤˤè¤ë¥Þ¥¯¥É¥Ê¥ë¥ÉÆâÀÑÃÍͽÁۤξÚÌÀ 1997(Ê¿À®9) Ä»¼èɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à1997(Âè6²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥×)Jan.5 Ä»¼èÂç³Ø ÂçÅçÍøͺ Bruhatʬ²ò¤ÈHarish-Chandra homomorphisms »³²¼ Çî ¥ê-¥Þ¥óÂоζõ´Ö¾å¤ÎÉÔÊÑÈùʬºîÍÑÁǤÈHarish-Chandra²Ã·²¤ÎÌÏ·¿ Çð¸¶Àµ¼ù Representation theory and Geometry ëºê½ÓÇ· Ķ´ö²¿ÊýÄø¼°¤Î·²ÏÀŪ¹Í»¡ Íî¹ç·¼Ç· ¼Â5¼¡¸µÁжʶõ´Ö¾å¤Î¤¢¤ëÆüì´Ø¿ô ¾®ÎÓ½Ó¹Ô O(p,q) ¤Î minimal ɽ¸½¤Ë¤ª¤±¤ë dual pair ¼ã»³Àµ¿Í À׸ø¼°¤Î»ÈÍÑË¡ Ìî¼δ¾¼ Multiplicity-free action ¤È Berezin ÊÑ´¹ µÆÃÓ¹îɧ Heisenberg·²¾å¤ÎO(n)-µåÈ¡¿ô °æ¾å½ç»Ò ¶ÒÎí¤ª¤è¤Ó²Ä²ò Lie ·²¤Î holomorphically induced representation À¾»³ µý Sp(2n,R) ¤Î¥æ¥Ë¥¿¥êºÇ¹â¥¦¥§¥¤¥Èɽ¸½¤Î Bernstein ¼¡¿ô¤Ë¤Ä¤¤¤Æ ë¸ý·òÆó r-2 ·¿¥Ý¥Æ¥ó¥·¥ã¥ë¤ò»ý¤Ä¥Ï¥ß¥ë¥È¥Ë¥¢¥ó¤È²Ä´¹¤ÊÈùʬºîÍÑÁǤˤĤ¤¤Æ Poguntke¶µ¼ø¤ò°Ï¤à¸¦µæ½¸²ñ 1997.3.6-7Æü µþÅÔÂç³ØÍý À¤ÏÃ¿Í Ìî¼δ¾¼ µÆÃϹîɧ On Gelfand pairs associated to non type I solvable Lie groups ·§¸¶·¼ºî Non-unitary representations and orbits for some nilpotent Lie groups Detlev POGUNTKE A short proof of the injectivity of the Harish-Chandra transform ¿ÜƣδÍÎ Dimension theory of group C*-algebras of type I ²Ïź ·ò Atomic Hardy spaces and maximal operators on semisimple Lie groups ¿·²° ¶Ñ Banach representability for a kind of semi-direct groups °æ¾å½ç»Ò Holomorphically induced representations of some solvable Lie groups
¥·¥ó¥Ý¥¸¥¦¥à¤ÎÎò»Ë¤Î¥Ú¡¼¥¸¤ËÌá¤ë
½¸²ñ¡¦¥»¥ß¥Ê¡¼¤Î¥Ú¡¼¥¸¤ËÌá¤ë
ÆüËܸì¥Û¡¼¥à¥Ú¡¼¥¸¤ËÌá¤ë
Last Update :