·§¸¶ÀèÀ¸¤Î¤Þ¤È¤á¤Æ²¼¤µ¤Ã¤¿ Lie ·²¤Îɽ¸½ÏÀ´Ø·¸¤Î½¸²ñ¤Î¤Û¤ÜÌÖÍåŪ¤Ê¥×¥í¥°¥é¥à¤Ç¤¹¡£·§¸¶ÀèÀ¸¤Î¸ÀÍÕ¤ò¾¯¤·°úÍѤ·¤Æ¤ª¤­¤Þ¤¹¡£
·§¸¶¤Ç¤¹¡£¥·¥ó¥Ý¥¸¥¦¥à¤Îµ­Ï¿¤ò¤Þ¤È¤Þ¤Ã¤¿¤È¤³¤í¤Þ¤ÇÁ÷¤ê¤Þ¤¹¡£ ɽ¸½ÏÀ¥Û¡¼¥à¥Ú¡¼¥¸Åù¤Ç¤´ÍøÍѤ¯¤À¤µ¤¤¡£ÉÔ´°Á´¤Ê¤â¤Î¤À¤È¤ª¤â¤¤ ¤Þ¤¹¤¬¡¢ÄûÀµ¡¢Äɲᢺï½üÅù¤Ï»ä¤Þ¤Ç¤´Ï¢Íí¤¯¤À¤µ¤¤¡£¥×¥ê¥ó¥È¥¢ ¥¦¥È¤·¤¿¤â¤Î¤Ï¼¡²ó¤ªÌܤˤ«¤«¤Ã¤¿¤È¤­¤ªÅϤ·¤·¤Þ¤¹¡£¸µ¤Î¸¶¹Æ¤Ï °ìÂÀϺ7¤Ç¤¹¡£°ìÅÙ¤ËÁ÷¤ì¤Ê¤¤¤Î¤Ç²¿²ó¤«¤Ëʬ³ä¤·¤Þ¤¹¡£(¤«¤Ë¹¾ ¤µ¤ó¤Î³ª¤È¤¤¤¦»ú¤¬¤Ê¤¤¤Î¤Çºî¤ë¤Î¤ò¥µ¥Ü¤Ã¤Æ³ª¤ò»È¤Ã¤Æ¤¤¤Þ¤¹¡£ )
·§¸¶·¼ºî
       Ä»¼èÂç³Ø¹©³ØÉôÃÎǽ¾ðÊ󹩳زÊ
             680Ä»¼è»Ô¸Ð»³Ä®Æî4-101
             PHONE(DI):0857-31-5624
             FAX     :0857-31-5678
             E-MAIL  :kumahara@ike.tottori-u.ac.jp
ɽ¸½ÏÀ´Ø·¸¥·¥ó¥Ý¥¸¥¦¥àµ­Ï¿                ÊÔ½¸ÀÕǤ  ·§¸¶·¼ºî
                                1997.3.26¹¹¿·

1956(¾¼31)
Âè1²óÀÖÁÒ¥»¥ß¥Ê¡¼ 1956 July25-Aug.1 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö
    Èø´Ø±Ñ¼ù    Connections
    Ìî¿å¹î̦    Homogeneous space ¾å¤Î invariant linear connection ¤È¤½¤Î±þÍÑ
    ´äËÙĹ·Ä    ÂоΥ꡼¥Þ¥ó¶õ´Ö¾å¤ÎÉÔÆ°ÅÀÄêÍý
    °ËÀª´´Éס¦¿ù±º¸÷Éס¦ºØÆ£ÀµÉ§  ÂоΥ꡼¥Þ¥ó¿ÍÍÂΤÎʬÎà¤Ë¤Ä¤¤¤Æ
    Ìî¿å¹î̦    Kahlerian connection ¤Ë´Ø¤¹¤ë´ðËÜÄêÍý
    ¾¾ÅçÍ¿»°    Hermitian symmetric space ¤Ë¤Ä¤¤¤Æ
    ÂìÂôÀºÆó    Connection and characteristic classes
    ¼¾å¿®¸ã    Fundamental characteristic classes of sphere bundles
    ÃæÌîÌÐÃË    Analytic vector bundle ¤Ë¤Ä¤¤¤Æ
    º´Éð°ìϺ    Symplectic geometry ¤Ë¤Ä¤¤¤Æ
   
1958(¾¼33)
Âè3²óÀÖÁÒ¥»¥ß¥Ê¡¼¡Ö¿ÍÍÂΤȰÌÁê´ö²¿³Ø¡× 1958 July 25-30 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö 
    ­µCharacteristic classes and homogeneous spaces (A.Borel-F.Hirzebruch) ¾Ò²ð
     1.Compact Lie groups                      ¿ù±º¸÷É×
     2.Topological preliminaries               ºØÆ£´îͨ
     3.Roots and characteristic classes        ºØÆ£´îͨ 
     4.Roots ¤ÈÉÔÊÑÊ£Áǹ½Â¤                    °ËÀª´´É×¾Î
     5.Homogeneous space G/V ¤È Riemann-Roch-Hirzebruch ¤ÎÄêÍý  Åļ°ìϺ
    ­¶Ä¹Ìî  Àµ    ÅùÊýŪ¤Ê¥ê¡¼¥Þ¥ó¶õ´Ö
    ­·¹ÓÌÚ¾¹Ï¯    Fibre ¶õ´Ö (locally trivial) ¤Î¥¹¥Ú¥¯¥È¥ë·ÏÎó¤Î°ì°ÕÀ­
    ­¸ÁÒÀ¾ÀµÉð    Pseudogroup structure ¤ÎÊÑ·Á¤Ë¤Ä¤¤¤Æ
    ­¹ÂìÂôÀºÆó    Cartan Àܳ¤Î formulation
    ­ºº´¡¹ÌÚ½ÅÉ×  3¼¡¸µ Euclid ¶õ´Ö¤Ë¤ª¤±¤ë¶ÊÌÌÏÀ¤Î´ðËÜÄêÍý¤ÎÂç°è²½

1959(¾¼34)
¿ôÍý²Ê³ØÁí¹ç¸¦µæÈÉ¥·¥ó¥Ý¥¸¥¦¥à¡Ö·²ÏÀ¤ÈʪÍý³Ø1¡×1959 July23-25 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö
    µÈÂô¾°ÌÀ    ²óž·²¤È¥í¡¼¥ì¥ó¥Ä·²¤Îɽ¸½
    ÁÒÀ¾ÀµÉð    ̵¸Â¥ê¡¼·²¤Ë¤Ä¤¤¤Æ
    µÜÂô¹°À®    ʬ»¶¼°¤È¿ÊÑ¿ôÈ¡¿ôÏÀ
    ÃæÀ¾  ê÷    ʬ»¶¸ø¼°¤Î¾ÚÌÀ¤ÎÀÝÆ°ÏÀŪÊýË¡
    °ì¾¾  ¿®    ÀµÂ§Êñ¤Ë´ØÏ¢¤·¤Æ
    ÃæÌî·°É×    ÎÌ»ÒÎϳؤˤª¤±¤ë¾ì¤ÎÍýÏÀ¤Ë´ØÏ¢¤·¤Æ
    ¹â¶¶Îé»Ê    ¥í¡¼¥ì¥ó¥Ä·²¤Îɽ¸½¤ÈµåÈ¡¿ô
    
Âè4²óÀÖÁÒ¥»¥ß¥Ê¡¼  1959 July 27-Aug.8.3 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö
    ¿ù±º¸÷É×    compact ÂоΥ꡼¥Þ¥ó¶õ´Ö¾å¤ÎµåÈ¡¿ô
    ¹â¶¶Îé»Ê    Lobatchevsky ¶õ´Ö¤ÎÂÓµåÈ¡¿ô
    ¶ÌÀî¹±É×    ¿¸µÂΤˤª¤±¤ëÎÌ»Øɸ¤Î¦Æ-È¡¿ô
    µ×²ìƻϺ    Selberg ¤ÎÍýÏÀ¤Î¾Ò²ð-¤È¤¯¤Ë G ÉÔÊÑÈùʬºîÍÑÁǤˤĤ¤¤Æ-
    ¹â¶¶½¨°ì    ·²¤ÎÀ°¿ôɽ¸½¤Ë¤Ä¤¤¤Æ
    Í­ÇÏ  ů    Group variety ¤ÎÆó,»°¤ÎÀ­¼Á¤Ë¤Ä¤¤¤Æ
    °ËÀª´´É×    ÂоΥ꡼¥Þ¥ó¶õ´Ö¤Ë¤Ä¤¤¤Æ
    ´äËÙĹ·Ä    Classical groups ¤Î associative algebras ¤Î¼«¸ÊƱ·¿¤Î·²¤È¤·¤Æ¤ÎÄêµÁ¤Ë¤Ä¤¤¤Æ
    µÈÂô¾°ÌÀ    ·²¤Îɽ¸½¤ÈµåÈ¡¿ô¤Ë¤Ä¤¤¤Æ
    ´äËÙĹ·Ä    Homogeneous space ¤ÎÁÐÂÐÄêÍý¤Ë¤Ä¤¤¤Æ

¿ôÍý²Ê³ØÁí¹ç¸¦µæÈÉ¥·¥ó¥Ý¥¸¥¦¥à¡Ö·²ÏÀ¤ÈʪÍý³Ø2¡×1959 Sept.27-28 ÅìµþÂç³Ø¶µÍܳØÉô
    »³Æⶳɧ    ÎÌ»ÒÎϳؤˤª¤±¤ë·²ÏÀ¤ÎÌòÌÜ
    ¼°æ¹¯µ×    ÈóÀƼ¡¥í¡¼¥ì¥ó¥Ä·²
    ÁÒÀ¾ÀµÉð    ÉÔÊÑÀÑʬ¤Ë¤Ä¤¤¤Æ
    ĹÌî  Àµ    Èùʬ²Äǽ¿ÍÍÂξå¤Î³°Èùʬ·Á¼°¤ÎÀÑʬ
    ËÙ¹¾  µ×    Racah algebra ¤Ë¤Ä¤¤¤Æ
    ´äËÙĹ·Ä    ÅļÂÀϺ»á¤ÎÌäÂê¤Ë¤Ä¤¤¤Æ 

¿ôÍý²Ê³ØÁí¹ç¸¦µæÈÉ¥·¥ó¥Ý¥¸¥¦¥à¡Ö·²ÏÀ¤ÈʪÍý³Ø3¡×1959 Nov.30-Dec.2 Ç®³¤»ÔÀ²³¤Áñ
    ¼¾å¿®¸ã    °ì¼¡ÊÑ´¹·² GL(n,C) ¤Îɽ¸½ÏÀ
    ´äËÙĹ·Ä    ľ¸ò·²¤È¼Ð¸ò·²¤Îɽ¸½ÏÀ
    ÃæÀ¾  ê÷    ÂèÆóÎ̻Ҳ½

 1960(¾¼35)
Âè5²óÀÖÁÒ¥»¥ß¥Ê¡¼ 1960 July 26-30 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö 
    µÈÂô¾°ÌÀ    Automorphic functions ¤È unitary representations
    º´Éð°ìϺ    ÂоΠRiemann ¶õ´Ö¤Îɽ¸½¤È¥³¥ó¥Ñ¥¯¥È²½
    ¾¾ÅçÍ¿»°    Stein Åù¼Á¶õ´Ö
    °ì¾¾  ¿®    Riemann Ì̤Πmoduli
    º´Éð°ìϺ    p¿ÊÂξå¤ÎµåÈ¡¿ô

1960(¾¼35)
Âè5²óÀÖÁÒ¥»¥ß¥Ê¡¼ 1960.July 26-30 ÅìÍÎËÂÀÖÁÒ¥¯¥é¥Ö 
    µÈÂô¾°ÌÀ    Automorphic functions ¤È unitary representations
    º´Éð°ìϺ    ÂоΠRiemann ¶õ´Ö¤Îɽ¸½¤È¥³¥ó¥Ñ¥¯¥È²½
    ¾¾ÅçÍ¿»°    Stein Åù¼Á¶õ´Ö
    °ì¾¾  ¿®    Riemann Ì̤Πmoduli
    º´Éð°ìϺ    p¿ÊÂξå¤ÎµåÈ¡¿ô

1961(¾¼36)
(ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à)1961 Jan.5-7 ÅìµþÂç³Ø¶µÍܳØÉô
    »Ö¼¸ÞϺ    Automorphic form
    ¿ù±º¸÷É×    Principal non-degenerate series
    ÃÝÇ·Æâæû    Representation factorielle
    äÇÏ¿­É§    3-¼¡¸µ¥í¡¼¥ì¥ó¥Ä·²¤Î¾¦¶õ´Ö¤Î¾å¤Ëºî¤é¤ì¤¿É½¸½¤Î´ûÌóʬ²ò

(ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à)(1961 Sept.9-11) ÅìµþÂç³ØÍý³ØÉô
    ¾®¿Ë¤¢¤­¹¨  ͶƳɽ¸½¤Ë¤Ä¤¤¤Æ(ȾľÀÑ·¿·²)
    äÇÏ¿­É§    G.W.Mackey ¤Î induced representation
    ¿ù±º¸÷É×    Complex semi-simple group ¤Î representation ¤Î construction
    µÈÂô¾°ÌÀ    Irreducible decomposition I, II
    º´Éð°ìϺ    Automorphic form
    ÀõÌî  ÍÎ    Cartier ¤Ë¤è¤ë Weyl ¤Î multiplicity formula ¤Î proof
    º´Éð°ìϺ    µåÈ¡¿ô¤ÎÀ°¿ôÏÀ¤Ø¤Î±þÍÑ(Ramanujan ͽÁÛ)  

1962(¾¼37)
(ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à)(1962 May 15) ·øÅÄÅìÍÎ˵áÀ§Áñ
    ¿ù±º¸÷É×    G/K ¤ÎµåÈ¡¿ô¤Î·èÄê
    ÀÞ¸¶ÌÀÉ×    Real semi-simple group ¤Îɽ¸½¤Î¹½À®
    µÈÂô¾°ÌÀ    ¡ç-¼¡¸µ¶õ´Ö¤Î measure

1963(¾¼38)
Âè5²óÂå¿ô¥·¥ó¥Ý¥¸¥¦¥à  ¥¼¡¼¥¿È¡¿ô(1963 Oct 10-11) ÅìµþÂç³Ø
    ÀÞ¸¶ÌÀÉ×    Unitary ɽ¸½¤È Zeta È¡¿ô
    ²ÏÅķɵÁ    ¦ÆÈ¡¿ô½øÏÀ
    Æ£ºê¸»ÆóϺ  2¼¡·Á¼°¤Î¦ÆÈ¡¿ô
    º£ÌÆó    ¿¸µ´Ä¤Î¦ÆÈ¡¿ô(Godement ¤ÎÍýÏÀ)
    ÅÚ°æ¸øÆó    Âʱߥ⥸¥å¥é¡¼È¡¿ôÂΤȤ½¤Î¥ä¥³¥Ó¿ÍÍÂΤˤĤ¤¤Æ
    ¶áÆ£  Éð    Hasse ¤Î¦ÆÈ¡¿ô¤Èµõ¿ô¾èË¡

ÆüËÜ¿ô³Ø²ñ  (1963 Oct)  ÅìµþÂç³Ø
    F.Bruhat    p¿ÊÂξå¤ÎÂå¿ô·²

1964(¾¼39)
¥æ¥Ë¥¿¥êɽ¸½¥·¥ó¥Ý¥¸¥¦¥à(1964.March 23-27) ·øÅÄÅìÍÎË·øÅÄÎÀ
    ÀÄËÜÏÂɧ    ¼ÂȾñ½ã Lie ·²¤Îɽ¸½ÏÀ
    ¹â¶¶Îé»Ê    de Sitter group ¤Îɽ¸½ÏÀ
    ºØÆ£ÀµÉ§    p-adic representation theory
    ÀÞ¸¶ÌÀÉ×    Plancherel formula
    ´Ý»³¼¢Ìï    Discrete subgroup ¤Èɽ¸½ÏÀ(I)
    ÀÞ¸¶ÌÀÉ×    Discrete subgroup ¤Èɽ¸½ÏÀ (II) 
    ÅÚ°æ¸øÆó    Hecke ºîÍÑÁÇ¤È trace formula
    º´Æ£´´É×    Åù¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤È zeta È¡¿ô

¥æ¥Ë¥¿¥êɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1964..July6-8)È¢º¬¶¯ÍåÀűÀÁñ À¤ÏÃ¿Í ÀÞ¸¶ÌÀÉ×
    ÀÞ¸¶ÌÀÉ×    SL(2,C) ¤Îɽ¸½¤Î¥Æ¥ó¥½¥ëÀÑ
    äÇÏ¿­É§    SL(2,R) ¤Îɽ¸½¤Î¥Æ¥ó¥½¥ëÀÑ 
    äÇÏ¿­É§    SL(2,R) ¤ÎÁÐÂÐÀ­
    µÜºê  ¹À¡¦µÜºê  ¸ù¡¦ÀÄËÜÏÂɧ  SL(2,R) ¾å¤Î¥Õ¡¼¥ê¥¨ÊÑ´¹
    ¿ù±º¸÷É×    SL(2,C) ¾å¤Î Paley-Wiener ¤ÎÄêÍý
    ¹â¶¶Îé»Ê    Kunze-Stein ¤ÎÍýÏÀ

1965(¾¼40)
(ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à)(1965 Feb.22-24) µþÅÔÂç³ØÍý³ØÉô
    Ê¿°æ  Éð    °ìÈÌ¥í¡¼¥ì¥ó¥Ä·²¤Î´ûÌóɽ¸½¤Î»Øɸ¸ø¼°¤È Plancherel ·¿¤ÎÄêÍý
    ²¬ËÜÀ¶¶¿    Plancherel formula ¤Ë¤Ä¤¤¤Æ¨¡ÆÃ¤Ë de Sitter ·²¤Î¾ì¹ç¨¡
    ÀÄËÜÏÂɧ    Ⱦñ½ã Lie ·²¤Î double coset ʬ²ò¤È¤½¤Î±þÍÑ
    ÌÚ²¼ÁÇÉ×    ¹ÔÎó´Ä¤Î Zeta È¡¿ô
    Ê¿¾¾Ë­°ì    SL(2,R) ¤ÎÉÔϢ³·²¤Ë´Ø¤¹¤ë Weight 1/2 ¤Î Automorphic form ¤Ë¤Ä¤¤¤Æ
    ÅÄÃæ½Ó°ì¡¦ÀÞ¸¶ÌÀÉ×  G/K ¤ÎÀµÂ§É½¸½¤Î¥¹¥Ú¥¯¥È¥ë¤Ë¤Ä¤¤¤Æ
    
ÆüÊÆÈùʬ´ö²¿³Ø¥»¥ß¥Ê¡¼  (1965 June 14-19) µþÅÔÂç³Ø¿ôÍý¸¦(¾¶)
    Y.Matsushima & S.Murakami  On certain cohomology groups attached to hermitian symmetric spsces
    S.Helgason  A duality in integral geometry on symmetric spaces with application to group representations
    R.Bott      A fixed point theorem for elliptic systems
    B.Kostant   Orbits, symplectic structure and representation theory
    N.Iwahori   On reflection groups of non-compact symmetric spaces
    M.Takeuchi  Applications of the theory of Nagano to symmetric spaces
    M.Kuga      Fibred variety over symmetric spaces whose fibres are abelian varieties
   
Âè8²óÂå¿ô¥·¥ó¥Ý¥¸¥¦¥à  ÉÔϢ³·²¤ÎÀ°¿ôÏÀ(1965 July 8-11)¶âÂô-»³Âå(¾¶)
    ÀÄËÜÏÂɧ    AIII ·¿¤Î Rank 2 ¤Îñ½ã Lie ·²¤Îɽ¸½
    µ×ÊÝÅÄÉÙͺ  Picard ·¿ÉÔϢ³·²¤Ë´Ø¤¹¤ëÏÃÂê
    ÀÞ¸¶ÌÀÉ×    Eisenstin µé¿ô¤È¥æ¥Ë¥¿¥êɽ¸½
    Æ£ºê¸»ÆóϺ  Poisson ¤Îϸø¼°¤Î°ìÈ̲½

(ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à)(1965 Aug.27-30) È¢º¬¶¯ÍåÀűÀÁñ
    ²¬ËÜÀ¶¶¿¡¦»³¸ý  ¶Ç¡¦ÀÞ¸¶ÌÀÉ×  Harish-Chandra ¤Î½ôÍýÏÀ¤Î²òÀ⤽¤Î¾
    ¿ù±º¸÷É×    K¡ÀG ¾å¤Î Plancherel formula
    ÅÚÀî¿¿É×    SL(2,C) ¤Îɽ¸½¤Î¹½À®
    ¿·Ã«ÂîϺ    de Sitter ·²¤Î principal ¤Ç¤Ê¤¤ discrete series ¤Ë¤Ä¤¤¤Æ
    ÅÄÃæ½Ó°ì¡¦ÀÞ¸¶ÌÀÉ×  ÉÔϢ³·²¤ÎϢ³¥¹¥Ú¥¯¥È¥ë¤È trace formula
    º´Éð°ìϺ    Symplectic representation of algebraic groups
    
1966(¾¼41)
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÄê¾ï²áÄø¡×(1966 Jan 30-Feb 1)(¾¶)
    µÈÂô¾°ÌÀ¡¦Ã¤ÇÏ¿­É§  Geodesic flows on homogeneous spaces
    
¡ÖºîÍÑÁǴĤȷ²¤Îɽ¸½¡×(1966 Feb.19-22)
    ÉÙ»³  ½ß    von Neumann algebra ¤Î global structure
    ÃݺêÀµÆ»    Èó²Ä´¹ÀÑʬÏÀ¤ÈĴϲòÀÏ
    ÉÙ»³  ½ß    C*-algebra ¤Î dual space
    ÃݺêÀµÆ»    C*-algebra ¤Îɽ¸½¤Î direct integral decomposition ¤ÈÀ®Ê¬¤Î unitary equivalence
    Ê¿°æ  Éð    Éé¤ÎÄê¶ÊΨ¶õ´Ö¾å¤Î geodesic flow ¤Ë¤Ä¤¤¤Æ
    ÀÞ¸¶ÌÀÉ×    Hermite ¿¹à¼°
    ¿ù±º¸÷É×    Í­¸Â¼¡¸µÉ½¸½¤Î duality
    äÇÏ¿­É§    ¶É½ê¥³¥ó¥Ñ¥¯¥È·²¤ÎÁÐÂÐÄêÍý
    ÃݺêÀµÆ»    C*-algebra ¤Îɽ¸½¤Ë¤ª¤±¤ë duality

Âè4²ó Functional Analysis Symposium (1966.July13-14) ¶âÂôÂç³Ø(¾¶)
    äÇÏ¿­É§    Locally Compact Group ¤ÎøÃæ·¿ÁÐÂÐÄêÍý

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖȾñ½ã·²¾å¤Î Fourier ÊÑ´¹¤È¤½¤Î±þÍÑ¡×1966.Aug.22-26
    ÀÄËÜÏÂɧ    Orispherical ÊÑ´¹¤È´Ø¿ôÊýÄø¼°¤Ë¤ª¤±¤ë¤¤¤¯¤Ä¤«¤ÎÌäÂê
    ¿¹Ëܸ÷À¸    Radon ÊÑ´¹¤Ë´Ø¤¹¤ë°ìÈÌÏÀ¤È¤½¤Î±þÍÑ
    ÀÞ¸¶ÌÀÉ×    n ¼¡ Lorentz ·²¤Î class1¤Îɽ¸½¤ò n-1 ¼¡ Lorentz ·²¤ËÀ©¸Â¤·¤¿É½¸½¤Îʬ²ò
    Ê¿°æ  Éð    °¿¼ï¤Î¼Âñ½ã·²¤Î character
    ÅÄÃæ½Ó°ì    SL(2,K)(K:¶É½ê¥³¥ó¥Ñ¥¯¥ÈÂÎ)¤Î´ûÌó¥æ¥Ë¥¿¥êɽ¸½¤Î¹½À®Ë¡
    µ×²ìƻϺ    Abel ¿ÍÍÂΤò fiber ¤È¤¹¤ë fiber space ¤Î¦Æ´Ø¿ô

Conference in Katata on the theory of partial differential equations and on the theory of complex manifolds, 1966 Sept 18-22(¾¶)
    K.Okamoto & H.Ozeki  On some types of unitary representations

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1966.Nov.10-11) °ËÅì»Ô¸÷É÷³Õ À¤ÏÃ¿Í ºØÆ£ÀµÉ§  
    ºØÆ£ÀµÉ§    p¿ÊÊ¿Ì̤α¿Æ°·²¤Î¥æ¥Ë¥¿¥êɽ¸½
    ²¬ËÜÀ¶¶¿    °¿¤ë¼ï¤Îcohomology space¤Ë¤ª¤±¤ëɽ¸½¤Î¹½À®
    ¹â¶¶Îé»Ê    Moscow Congress¤Ç¤ÎÏÃÂê
    ¿·Ã«ÂîϺ    ÁжÊÌ̾å¤ÎPlancherel¤ÎÄêÍý
    µÈÂô¾°ÌÀ    Hilbert¶õ´Ö¤Î²óž·²

1967(¾¼42)
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö̵¸Â¼¡¸µ²óž·²¤Î°ÌÁê¤È¤½¤Î±þÍÑ¡×1967 Feb. 25-27
    µÈÂô¾°ÌÀ    ̵¸Â¼¡¸µ²óž·²
    ÈôÅÄÉ𹬠   ½ÅÊ£ Wiener ÀÑʬ¤Î°ìÈ̲½
    »³ºêÂÙϺ    ̵¸Â¼¡¸µ Laplacian
    µÈÂô¾°ÌÀ    ̵¸Â¼¡¸µ Lie ·²¤Î°ì¤Ä¤Î±þÍÑ(V.Arnold ¤Î¸¦µæ¤Î¾Ò²ð)
    ÃæÌîèÁÉ×    ¾ì¤ÎÍýÏÀ¤Ë¤ª¤±¤ë Gauge ÊÑ´¹·²

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÈó¥³¥ó¥Ñ¥¯¥È·²¤ÎʪÍý¤Ø¤Î±þÍÑ¡×1967 Jun. 11-13
    ¹â¶¶Îé»Ê    Lorentz µÚ¤Ó de Sitter ·²¤Îɽ¸½
    ¿·Ã«ÂîϺ    2¼¡¶ÊÌ̤ˤª¤±¤ë Lorentz ·²¤ÎÀµÂ§É½¸½¤Î´ûÌóɽ¸½¤Ø¤Îʬ²ò
    ÃæÌîèÁÉס¦±×ÀîÉÒÉ×  Kepler problem
    ÃæÌîèÁÉס¦µµÊ¥  íì  Higher spin particle ¤Î Lagrange formalism
    ¹âÎÓÉðɧ    Infinite component ¤ÎÇÈÆ°ÊýÄø¼°

Symposium on theory of group representations and some of its applications 1967 July 6-7  µþÅÔÂç³ØÍý³ØÉô
    R.Godement  Introduction to the theory of Langlands
    S.Tanaka    On irreducible representation of binary modular congruence group mod p¦Ë
    N.Tatsuuma  A duality theorem for locally compact groups
    M.Sugiura   Duality theorem for Lie groups and their homogeneous spaces
    T.Shintani  

1968(¾¼43)
¥æ¥Ë¥¿¥êɽ¸½¥·¥ó¥Ý¥¸¥¦¥à(1968.Jan.27-28)µþÅÔÂç³ØÍý³ØÉô  À¤ÏÿÍäÇÏ¿­É§
    ·§¸¶·¼ºî    Ê£ÁÇȾñ½ã·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
    ¿ù±º¸÷É×    "¿ô³Ø"»ï¥æ¥Ë¥¿¥êɽ¸½ÏÀÆý¸¹æ¤Ë¤Ä¤¤¤Æ
    ¿·Ã«ÂîϺ    p¿ÊÂξå¤ÎÆüìÀþ·¿·²¤Î discrete series ¤Ë¤Ä¤¤¤Æ
    À¶¿åµÁÇ·    ¥í¡¼¥ì¥ó¥Ä·²¾å¤Î Paley-Wiener ·¿¤ÎÄêÍý

¿ôÏÀ¾®¥°¥ë¡¼¥×¶¯Í奻¥ß¥Ê¡¼¡ÖÂå¿ô·²¤ÈÊÝ·¿È¡¿ô¡×  1968 June 22-23
    º´Éð°ìϺ    Abel ¿ÍÍÂΤò fibre ¤È¤¹¤ë fibre ¿ÍÍÂΤΠcompact ²½
    ¿¹ÅĹ¯É×    Hecke ¿¹à¼°¡¢·²¤Î¥¼¡¼¥¿È¡¿ô¡¢¥Õ¥¡¥¤¥Ð¡¼Â¿ÍÍÂΤιçƱ¥¼¡¼¥¿È¡¿ô¤ÎƱ°ìÀ­¤Ë¤Ä¤¤¤Æ
    Åĺäδ»Î    Cohomology of some special tori and its applications
    ÅÚ°æ¸øÆó    Weil ¤ÎÈ¡¿ôÅù¼°¤Ë¤è¤ë Dirichlet µé¿ô¤ÎÆÃħÉÕ¤±¤Î»Å»ö¤Ë´Ø¤¹¤ëÃí°Õ
    °Ë¸¶¹¯Î´    ɸ¿ô0¤Î correspondence ¤ò½¼Ê¬Âô»³¤â¤ÄÂå¿ô¶ÊÀþ¾å¤Ë¤Ï2³¬ Fuchs ·¿ÈùʬÊýÄø¼°¤Î¡Öcharacteristic class¡×¤¬Â¸ºß¤¹¤ë¤³¤È
    ´äËÙĹ·Ä    ¹çƱÉôʬ·²ÌäÂê¤Ë´Ø¤¹¤ëºÇ¶á¤Î·ë²Ì¤Ë¤Ä¤¤¤Æ

¿ôÍý¸¦¡ÖºîÍÑÁǴĸ¦µæ²ñ¡×(1968 Julu 1-3)(¾¶)
    äÇÏ¿­É§    ·²´Ä¤òÍ¿¤¨¤ë double Hilbert algebra
    ºØÆ£ÏÂÇ·    On a duality for locally compact groups
    ÃݺêÀµÆ»    äÇÏÁÐÂÐÄêÍý¤ÈºîÍÑÁÇ´Ä

Âè3²óÈ¡¿ô²òÀϸ¦µæ²ñ  1968 July 20-22    °ñ¾ëÂç³Ø¹©³ØÉô(¾¶)
    ·§¸¶·¼ºî    Ⱦñ½ã·²¾å¤Î Fourier ²òÀÏ(Harish-Chandra ¤ÎÍýÏÀ)

ɽ¸½ÏÀ¤È¿ôÏÀ¤È¤Î´ØÏ¢(1968.July28-30)    ·øÅÄ ÅìÍÎË·øÅÄÎÀ
    µ×ÊÝÅÄÉÙͺ  Áê¸ßˡ§¤È¥æ¥Ë¥¿¥êɽ¸½  
    ¿·Ã«ÂîϺ    ÊÝ·¿·Á¼°¤Î Fourier Ÿ³«·¸¿ô¤Ë¤Ä¤¤¤Æ
    ¹â¶¶Îé»Ê    SO0(n,1)¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
    Ê¿°æ  Éð    Ⱦñ½ã·²¾å¤ÎÉÔÊÑĶȡ¿ô
    ¾¾Â¼±ÑÇ·    Lie ´Ä¤ÎŸ³«´Ä¤Î¾¦ÂÎ

1969(¾¼44)                                              
·²¤Îɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à  1969 Jan 13-15 µþÅÔÂç³ØÍý³ØÉô
    ¿·Ã«ÂîϺ    Two step unipotent group ¤È Symplectic group ¤È¤ÎȾľÀѤΤ¢¤ë¼ï¤Î unitary ɽ¸½
    ¿ù±º¸÷É×    Tannaka group ¤Î duality
    Ê¿°æ  Éð    ñ½ã¥ê¡¼·²¤ÎÉÔÊѸÇͭĶȡ¿ô
    ÅÚÀî¿¿É×    SL(n,C) ¤Îɽ¸½¶õ´Ö¤Î¹½Â¤¤Ë¤Ä¤¤¤Æ
    ¹â¶¶Îé»Ê    
    °ÂÆ£ðð°ì    I.M.Gel'fand and A.A.Kirillov ¤Î Lie ¾¦ÂΤÎÍýÏÀ¤Î¾Ò²ð
    ËÙÅÄÎÉÇ·    W.Schmid ¤Î "Homogeneous complex manifolds and representations of semi-simple Lie group" ¤Î¾Ò²ð

¿ôÍý¸¦¸¦µæ½¸²ñ¡Öº´Æ£¤ÎĶȡ¿ôÏÀ¤È¤½¤Î±þÍÑ¡×1969.Nov. 27-29(¾¶)
    ²¬ËÜÀ¶¶¿    ɽ¸½ÏÀ¤Ë¤¢¤é¤ï¤ì¤ëĶȡ¿ô

1970(¾¼45)                                                    
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1970.Jan.24-26) ÇòÉͲ¹Àô  À¤ÏÃ¿Í °ÂÆ£ðð°ì
    Ê¿°æ  Éð    Discrete series ¤Îɽ¸½¤È character
    ÏÆËÜ  ¼Â    Principal series ¤Î´ûÌóÀ­¤Ë¤Ä¤¤¤Æ
    ²¬ËÜÀ¶¶¿    Principal series ¤Îʬ²ò¤Ë¤Ä¤¤¤Æ
    ÀîÃæÀëÌÀ    The behavior of the spectrum of §¤¡ÀG when §¤varies
    ´Ý»³¼¢Ìï    Holospherical subgroup ¤Î¶¦ÌòÀ­¤Ë¤Ä¤¤¤Æ
    À¶¿åµÁÇ·    De Sitter ·²¤ÎÈïʤ·²¾å¤ÎĴϲòÀÏ
    Êö¼¾¡¹°    Kunze-Stein ¤ÎÍýÏÀ 
  
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂå¿ôŪÀ°¿ôÏÀ¤Ë¤ª¤±¤ëºÇ¶á¤Î½ôÌäÂê¡×1970.Jan.27-29(¾¶)
    ¿·Ã«ÂîϺ    Poisson ¤Îϸø¼°¤Î°ì¤Ä¤ÎÎà»÷
    ÅÄÃæ½Ó°ì    Theta distribution ¤«¤éƳ¤«¤ì¤ë¥¢¥Ç¡¼¥ë·²¾å¤ÎÊÝ·¿·Á¼°¤Ë¤Ä¤¤¤Æ

1971(¾¼46)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1971 Feb 13-15) ÄŻԸæžìÁñ  À¤ÏÿÍÅÚÀîâÃÉ×
    ¿·²°  ¶Ñ    °ìÈÌÀþ·¿°ÌÁê¶õ´Ö¤Ë¤ª¤±¤ëµåÈ¡¿ô
    ¼ò°æ¹¬µÈ    Nilpotent Lie ·²¤Ë´Ø¤¹¤ë Kirillov ͽÁۤˤĤ¤¤Æ
    ËÙÅÄÎÉÇ·    ¼ÂȾñ½ã·²¤ÎÎ¥»¶·ÏÎóɽ¸½¤Î¹½À®
    ÏÆËÜ  ¼Â    Polarization ¤Ë¤Ä¤¤¤Æ
    ²¬ËÜÀ¶¶¿    Gelfand-Graev ¤Î¤¢¤ëÉÔÃí°Õ¤Ê Remark ¤Ë¤Ä¤¤¤Æ
    ̶ÅÄÍ롓    L2(P¡ÀG/K) ¤Îʬ²ò:spectra ¤Î¤¢¤ë¹ÔÆ°¤Ë¤Ä¤¤¤Æ
    ¹¾¸ýÀµ¹¸    Âоζõ´Ö¾å¤ÎµÞ¸º¾¯È¡¿ô¤Î Radon ÊÑ´¹
    »°Ä»Àî¼÷°ì  °ìÈÌ Lorentz ·²¾å¤ÎÇ®ÊýÄø¼°¤Ë¤Ä¤¤¤Æ
    ºØÆ£ÀµÉ§    Sp(2n,k),(k:self-dual) ¤Îɽ¸½¤Î°ìÈÌŪ¤Ê¹½À®
    ¿ù±º¸÷É×
    
ÆüËÜ¿ô³Ø²ñ  1971 April  ÅìµþÅÔΩÂç³Ø
  ÆÃÊֱ̹é
    ¿·Ã«ÂîϺ    ³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤Î¥¼¡¼¥¿È¡¿ô(Âå¿ô³Ø¡¦°ÌÁê¿ô³Ø)

¿ôÍý¸¦¸¦µæ½¸²ñ¡Öɽ¸½ÏÀ¤ÈÂç°è²òÀϳء×1971.June 22-24
    ËÙÅÄÎÉÇ·    A report on realizations of the discrete series 
    ÆñÇÈ  À¿    Maximal famillies of compact complex manifolds
    M.S.Narasimhan  On discrete series
    ¶¶ÄÞƻɧ¡¦²¬ËÜÀ¶¶¿  An example of Lefschetz fixed point theorem for non-compact case
    Çð¸¶Àµ¼ù    Applications of hyperfunctions to unitary representations
    ¿·Ã«ÂîϺ    Zeta functions associated with prehomogeneous vector spaces
    º´Æ£´´É×    GLn ¤Î¥¼¡¼¥¿È¡¿ô

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖOperaro algebra ¤È¤½¤Î±þÍÑ¡×(1971 Aug 9-11)(¾¶)
    äÇÏ¿­É§    Plancherel measure is the Haar measure on dual object

À°¿ôÏÀÆüÊÆ¥»¥ß¥Ê¡¼  1971 Aug 30-Sept 4  Åý·×¿ôÍý¸¦µæ½ê
      H.Jaquet, ¿·Ã«ÂîϺÅù

¸¦µæ½¸²ñ¡Ö¥·¥ó¥×¥ì¥¯¥Æ¥£¥Ã¥¯Â¿ÍÍÂΡ×1971 Sept ¹­ÅçÂç³Ø
    Èø´Ø±Ñ¼ù    Dirac operator D ¤È ¢ß
    ËÙÅÄÎÉÇ·    discrete series ¤Î¼Â¸½
    ÏÆËÜ  ¼Â    Ⱦñ½ã Lie´Ä¤Î polarization
    ÃÝÆâ  ¾¡    µåÈ¡¿ô¤Ë¤Ä¤¤¤Æ  

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂоζõ´Ö¤ÈÊÝ·¿´Ø¿ô¡×1971 Nov 10-13 À¶¿å±ÑÃËÂåɽ
    »°ÂðÉÒ¹±,°Ë¸¶¿®°ìϺ,º´Éð°ìϺ,ÅÚÊý¹°ÌÀ,ÀîÃæÀëÌÀ,»°Âð¹îºÈ,ÃÝÆâ´îº´Íº, ¿¹ÅĹ¯É×

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÅù¼Á¶õ´Ö¾å¤Î²òÀϳء×1971.Dec 1-3²¬ËÜÀ¶¶¿Âåɽ
    ÅÚÀî¿¿É×     Lorentz ·²¤Îɽ¸½¤Î intertwining operator ¤Ë¤Ä¤¤¤Æ
    ²¬ËÜÀ¶¶¿    Ä´Ï·Á¼°¤Î¥Ý¥¢¥½¥óɽ¼¨¤Ë¤Ä¤¤¤Æ
    ²Ï¹çδ͵    ¥³¥Û¥â¥í¥¸¡¼·²¤ÎÍ­¸ÂÀ­¤Ë¤Ä¤¤¤Æ¤Î´ðËܸ¶Íý
    Ê¿°æ  Éð    Ⱦñ½ã¥ê¡¼·²¾å¤ÎÉÔÊѸÇͭĶȡ¿ô
    º´Æ£´´É×    ¿ÍÍÂξå¤Î²òÀϳؤˤĤ¤¤Æ¤Î¼ã´³¤Î¹Í»¡
    Çð¸¶Àµ¼ù    ²¬ËÜͽÁۤˤĤ¤¤Æ

1972(¾¼47)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1972.Feb.5-7 ) ¾ëºê²¹Àô  À¤ÏÃ¿Í ²¬ËÜÀ¶¶¿
    ÀÄËÜÏÂɧ    Weyler ¤ÎÍýÏÀ¤Ë¤Ä¤¤¤Æ
    ÀîÃæÀëÌÀ    Í­¸Â Chevalley ·²¤Î´ûÌó»Øɸ¤Ë¤Ä¤¤¤Æ
    ¹¾¸ýÀµ¹¸    Âоζõ´Ö¾å¤ÎµÞ¸º¾¯´Ø¿ô¤Î Fourier ÊÑ´¹
    ̶ÅÄÍ롓    Schwartz space ¾å¤Î positive definite distribution¤Ë¤Ä¤¤¤Æ
    »°Ä»Àî¼÷°ì  Cusp ¶õ´Ö¤Î trace form ¤Ë¤Ä¤¤¤Æ
    äÇÏ¿­É§    Èó¥æ¥Ë¥â¥¸¥å¥é¡¼·²¤Î Plancherel Formula
    ¿ù±º¸÷É×    Í­¸Â¼¡¸µ¤Î¥¯¥é¥¹1ɽ¸½¤Î·èÄê 
    ³ª¹¾¹¬Çî    ·² Diff(S1) ¤Î´ûÌó¥æ¥Ë¥¿¥êɽ¸½¤Ë¤Ä¤¤¤Æ
    ÃÝÃæÌÐÉ×    È¡¿ô¶õ´Ö¤Î¡ÖÂ礭¤µ¡×¤È ¦Å-¥¨¥ó¥È¥í¥Ô¡¼

¡ÖGlobal Analysis¡×¥·¥ó¥Ý¥¸¥¦¥à  1972 March 27-30 ·øÅÄ  À¤ÏÿͰËÀª´´(¾¶)
    ²¬ËÜÀ¶¶¿    ¥Ù¥¯¥È¥ë¥Ð¥ó¥É¥ëÃÍÄ´Ï·¿¼°¤ËÂФ¹¤ë¥Ý¥¢¥Ã¥½¥óÀÑʬ¤Ë¤Ä¤¤¤Æ
    ÃÓÅÄ  ¾Ï    ´ú¿ÍÍÂξå¤Î¢ß-ºîÍÑÁÇ¤È Dirac ºîÍÑÁǤδط¸¤Ë¤Ä¤¤¤Æ

ÆüËÜ¿ô³Ø²ñ  1972 April  ·ÄØæµÁ½ÎÂç³Ø
  ÆÃÊֱ̹é
    ÀîÃæÀëÌÀ    Í­¸Â Chevalley ·²¤Î´ûÌó»Øɸ¤Ë¤Ä¤¤¤Æ(Âå¿ô³Ø)

Âè11²ó¼ÂÈ¡¿ôÏÀ¡¦Âè10²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1972.July12-14)  ¿·³ãÂç³Ø(¾¶)
    äÇÏ¿­É§    Plancherel formula for non-unimodular locally compact groups

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1972.Sept.5-7 ) ±üÆü¸÷  À¤ÏÃ¿Í ´Ý»³¼¢Ìï
    ºØÆ£ÀµÉ§    ¥â¥¸¥å¥é¡¼·²¤Îɽ¸½
    ÅÚÊý¹°ÌÀ    p ¿Ê¿¸µÂΤΥæ¥Ë¥¿¥êɽ¸½
    ÌÚ¼ãÉ×    ´ûÌ󳵶ѼÁ¥Ù¥¯¥È¥ë¶õ´Ö¤ÎʬÎà
    ËãÀ¸ÂÙ¹°    H.Furustenberg:Boundaries of Lie groups and discrete  subgroups¤òÃæ¿´¤È¤·¤Æ
    ÌÚȨÆƹ§    ¥é¥×¥é¥·¥¢¥ó¤Î¸ÇÍ­´Ø¿ô¤ÎÀÑʬɽ¼¨¤Ë¤Ä¤¤¤Æ(¥æ¡¼¥¯¥ê¥Ã¥É¶õ´Ö¤Î¾ì¹ç)
    ¶¶ÄÞƻɧ    ¥é¥×¥é¥·¥¢¥ó¤Î¸ÇÍ­´Ø¿ô¤ÎÀÑʬɽ¼¨¤Ë¤Ä¤¤¤Æ(°ìÈ̤ÎÂоζõ´Ö¤Î¾ì¹ç)
    °ÂÆ£ðð°ì¡¦ÅÚÀî¿¿É×    Zelobenko:Functions on semisimple Lie groups II  (Iz.'69) ¤Î¾Ò²ð

1973(¾¼48)
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö¥æ¥Ë¥¿¥êɽ¸½¤È¤½¤Î±þÍÑ¡×1973.March24-28
    ¼ò°æ¹¬µÈ    ·²¤Î Amenability ¤Èɽ¸½ÏÀ
    ºØÆ£ÀµÉ§    ·²¤Î¤¢¤ë¼ï¤ÎÉôʬ·²¤Èñ¹à¥æ¥Ë¥¿¥êɽ¸½
    ¹¾¸ýÀµ¹¸    Harmonic analysis on some type semisimple Lie group 
    ±ºÀî  È¥    ¥Ù¥¯¥È¥ëÃͥݥ¢¥Ã¥½¥óÀÑʬ¤ÈÄ´ÏÂ¥»¥¯¥·¥ç¥ó
    ÌÚȨÆƹ§    Ʊ¼¡Ä´Ï¿¹à¼°¤È Borel-Weil ¤ÎÄêÍý
    Êö¼¾¡¹°    ¼ÂÁжʷ¿¶õ´Ö¾å¤Î Laplacian ¤Î¸ÇÍ­´Ø¿ô¤Î¥Ý¥¢¥Ã¥½¥óÀÑʬɽ¼¨
    ÀîÃæÀëÌÀ    Í­¸Â Chevalley ·²¤Î´ûÌóɽ¸½,´ûÌó»Øɸ¤Ë¤Ä¤¤¤Æ
    ̶ÅÄÍ롓    °ìÈÌ Lorentz ·²¾å¤ÎĴϲòÀÏ
    ÊÆ»³½Ó¾¼    Limits of discrete series for the Lorentz groups
    ³ª¹¾¹¬Çî    Formal vector fields¤ÎLie´Ä¤Îcohomology¤Ë¤Ä¤¤¤Æ
    ²¼Â¼¹¨¾´    ²óž·²¤Î¾å¤Î Haar measure ¤Ë¤Ä¤¤¤Æ
    ÀîÀ¾·¼°ì    De Sitter ·²¤Î°ìÍÍÍ­³¦É½¸½

ÆüËÜ¿ô³Ø²ñ  1973 April  Ω¶µÂç³Ø
  ÆÃÊֱ̹é
    Ê¿°æ  Éð    Ⱦñ½ã¥ê¡¼·²¤Î̵¸Â¼¡¸µÉ½¸½¤È»Øɸ¤ÎÍýÏÀ(È¡¿ô²òÀϳØ)

¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡ÖÅù¼Á¶õ´Ö¤Ë¤ª¤±¤ëĴϲòÀÏ¡×  1973.June 22-29 ËãÀ¸ÂÙ¹°Âåɽ
    ËãÀ¸ÂÙ¹°    Poisson ɽ¸½¤È compactification
    ËãÀ¸ÂÙ¹°    Rigidity theorem
    ·´  ÉÒ¾¼
    ÌîËܵ×Éס¦ÃÝÃæÌÐÉ×
    ÅÚÀî¿¿É×
    »°¾å½Ó²ð

Âè12²ó¼ÂÈ¡¿ôÏÀ¡¦Âè11²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1973.July16-18)  ¶å½£¹©¶ÈÂç³Ø  (¾¶)
    ¹¾¸ýÀµ¹¸    Ⱦñ½ã¥ê¡¼·²¤ª¤è¤Ó¤½¤ÎÅù¼Á¶õ´Ö¾å¤Î¥Õ¡¼¥ê¥¨ÊÑ´¹¤ÎÍýÏÀ

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶȡ¿ô¤ÈÀþ·¿ÈùʬÊýÄø¼°II¡×1973 Sept 10-13(¾¶)
    Êö¼¾¡¹°    ¥é¥ó¥¯1¤ÎÂоζõ´Ö¾å¤Î¥é¥×¥é¥·¥¢¥ó¤Î¸ÇÍ­È¡¿ô

ÆüËÜ¿ô³Ø²ñ  1973 Oct  ²¬»³Âç³Ø
  ÆÃÊֱ̹é
    ²¬ËÜÀ¶¶¿    Âоζõ´Ö¾å¤ÎĴϲòÀÏ(È¡¿ô²òÀϳØ)

Âå¿ô·²¥»¥ß¥Ê¡¼ 1973 Nov 23-26 Åìµþ¶µ°éÂ绳Ã渦½¤½ê
    ÌÚ¼ãͺ¡¢ÀîÃæÀëÌÀÅù

1974 (¾¼49)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1974.Feb.   )Ë̶彣»Ô¤á¤«¤ê»³Áñ  À¤Ïÿͻ³¸ý ¶Ç
    ±ºÀî  È¥    ¥³¥ó¥Ñ¥¯¥È Lie ·²¾å¤Î heat equation
    ÏÆËÜ  ¼Â    SU(2,1) ¤ÎͶƳɽ¸½¤Î´ûÌóÀ­
    ¶¶ÄÞƻɧ    Subquotient theorem for SU(2,1)
    ²¬ËÜÀ¶¶¿¡¦°æ¾å  Æ©¡¦ÅÄÃæ  À¿  Paley-Wiener ÄêÍý¤Î±þÍÑ
    ËÙÅÄÎÉÇ·    Discrete series ¤Î multiplicity formula¤Ë¤Ä¤¤¤Æ
    »°Ä»Àî¼÷°ì  Î¥»¶·ÏÎó¤Îɽ¸½¤ÈÈó¥æ¥Ë¥¿¥ê¼ç·ÏÎó
    ¿ù±º¸÷É×    Î¥»¶·ÏÎó¤Î»Øɸ¤Î·×»»
    °ÂÆ£ðð°ì    ľÀþ¤Î°ì¼¡ÊÑ´¹·²¤ËÂФ¹¤ë Paley-Wiener theorem
    »°¾å½Ó²ð    Ê£ÁǸÅŵ·²¤ÎÊä·ÏÎó¤Îɽ¸½¤Ë¤Ä¤¤¤Æ

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶȡ¿ô¤ÈÀþ·¿ÈùʬÊýÄø¼°III¡×1974 Feb 4-7(¾¶)
    Çð¸¶Àµ¼ù    Theory of differential equations with regular-singularity and eigenfunctions of Laplacian of symmetric spaces
    ²¬ËÜÀ¶¶¿¡¦Êö¼¾¡¹°    Âоζõ´Ö¾å¤Î¶­³¦ÃÍÌäÂê¤Ë¤Ä¤¤¤Æ
    ËÙÅÄÎÉÇ·    Discrete series ¤È¤¢¤ë¼ï¤ÎÂʱ߷¿ºîÍÑÁÇ

ÆüËÜ¿ô³Ø²ñ 1974 April ÅìµþÂç³Ø
  Áí¹ç¹Ö±é
    º´Éð°ìϺ    Infinitesimal automorphisms of symmetric domains
  ÆÃÊÌ¹Ö±é  
    ¿·Ã«ÂîϺ    ³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤Î¥¼¡¼¥¿È¡¿ô(Âå¿ô³Ø)


Âè13²ó¼Â´Ø¿ôÏÀÂè12²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1974.7/11-13) Ë̳¤Æ»Âç³Ø  (¾¶)
    ¼ò°æ¹¬µÈ    Amenable transformation semigroup ¤Ë¤Ä¤¤¤Æ

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂоζõ´Ö¾å¤ÎÉÔÊÑÈùʬÊýÄø¼°¡×1974July22-24
    ²¬ËÜÀ¶¶¿    Âоζõ´Ö¾å¤Î¶­³¦ÃÍÌäÂê
    ÂçÅçÍøͺ    Âоζõ´Ö¤Ë¤ª¤±¤ë¶­³¦ÃÍÌäÂê¤Ë¤Ä¤¤¤Æ
    ²¬ËÜÀ¶¶¿¡¦ÌÚȨÆƹ§¡¦ÅÄÃæ  À¿  Intertwining operator ¤ÎĶ¶É½êÀ­¤Ë¤Ä¤¤¤Æ
    Çð¸¶Àµ¼ù    Intertwining operator ¤È¶ËÂç²á¾ê·èÄê·Ï¤Ë¤Ä¤¤¤Æ
    º´Æ£´´É×    Miclo-local calculus
    ÀÄËÜÏÂɧ    µåÈ¡¿ô¤ÎÊ£ÁÇÈ¡¿ôÏÀŪ¼è°·¤¤
    Êö¼¾¡¹°¡¦ÅÄÃæ  À¿¡¦²¬ËÜÀ¶¶¿  ¥é¥ó¥¯1¤ÎÂоζõ´Ö¾å¤Î¥Ç¥£¥ê¥¯¥ìÌäÂê
    ÃÝÃæÌÐÉ×    functional dimension ¤Ë¤Ä¤¤¤Æ
    »°Ä»Àî¼÷°ì  Real rank1¤ÎȾñ½ã¥ê¡¼·²¤Ë´Ø¤¹¤ë¤¢¤ë·ÏÎó¤Î´ûÌóɽ¸½¤Ë¤Ä¤¤¤Æ
    ±ºÀî  È¥    Èó¥³¥ó¥Ñ¥¯¥È·¿Âоζõ´Ö¾å¤Î Laplacian ¤ÎÊ£ÁǶҤˤĤ¤¤Æ

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1974   ) Â绳¤·¤í¤¬¤ÍÁñ  À¤ÏÿÍËãÀ¸ÂÙ¹°
    ³ª¹¾¹¬Çî    Cohomology of Lie algebras of vector fields with coefficients in adjoint representations
    ¶¶ÄÞƻɧ    Whittaker Model ¤Ë¤Ä¤¤¤Æ
    Æ£¸¶±ÑÆÁ    ²Ä²ò¥ê¡¼·²¤Î¥æ¥Ë¥¿¥êɽ¸½ÏÀ
    Æ£¸¶±ÑÆÁ    exponential group ¤Î unitary ɽ¸½
    ¸Å븭ϯ    ¼Â Banach ´Ä¤ËÂФ¹¤ë Arens-Royden ¤ÎÄêÍý
    ·§¸¶·¼ºî    Cartan ±¿Æ°·²¾å¤Î Fourier ÊÑ´¹
    ¹â¶¶Îé»Ê    Schmid ¤Î»Å»ö¤Î¾Ò²ð
    ËãÀ¸ÂÙ¹°    Litvinov ¤Î»Å»ö¤Ë¤Ä¤¤¤Æ

1975(¾¼50)
¿ôÍý¸¦Ã»´ü¶¦Æ±¡ÖÅù¼Á¶õ´Ö¤Ë¤ª¤±¤ëĴϲòÀÏ(II)¡×1975.March17-21
    ËãÀ¸ÂÙ¹°    Åù¼Á¶õ´Ö¾å¤Î³ÎΨ¾ì¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
    Ê¿°æ  Éð    È¡¿ô¤È¤·¤Æ¤ÎÉÔÊѸÇͭĶȡ¿ô  ¤È¤¯¤ËÎ¥»¶·ÏÎó¤Îɽ¸½¤Î»Øɸ¸ø¼°
    Æ£¸¶±ÑÆÁ    ²Ä²ò¥ê¡¼·²¤Î¥æ¥Ë¥¿¥êɽ¸½ÏÀ
    ÂçƦÀ¸ÅIJí°ì  ¼ç·ÏÎóɽ¸½¤Î´ûÌóÀ­¤Ë¤Ä¤¤¤Æ
    Êö¼¾¡¹°    Âоζõ´Ö¾å¤Î¸ÇÍ­È¡¿ô¤Î¶­³¦ÃͤÈÀÑʬɽ¼¨
    äÇÏ¿­É§    Àµµ¬Éôʬ·²¤ËÂФ¹¤ëÁÐÂÐÀ­ 

ÆüËÜ¿ô³Ø²ñ  1975 April  ÂçºåÂç³Ø
  ÆÃÊֱ̹é
    Êö¼¾¡¹°    HelgasonͽÁۤȳÎÄêÆðÛÅÀ·¿ÈùʬÊýÄø¼°(È¡¿ô²òÀϳØ)

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶȡ¿ô¤ÈÀþ·¿ÈùʬÊýÄø¼°IV¡×1975 April 4-10(¾¶)
    Êö¼¾¡¹°    Âоζõ´Ö¾å¤ÎÉÔÊÑÈùʬºîÍÑÁǤÎƱ»þ¸ÇÍ­È¡¿ô
    ÂçÅçÍøͺ    ³ÎÄêÆðÛÅÀ·¿¶­³¦ÃÍÌäÂê¤Ë¤Ä¤¤¤Æ

ÆüÊÆ¥»¥ß¥Ê¡¼¡ÖÊÝ·¿·Á¼°¤ÎÀ°¿ôÏÀ¤Ø¤Î±þÍÑ¡×
    S.Lang, µ×ÊÝÅÄÉÙͺ, L.J.Goldstein, ¿¥Åŧ¹¬, K.-Y.Shih, S.Gelbart, ºØƣ͵, H.Jaquet, ¿·Ã«ÂîϺ, D.Niebur, »³ËÜ˧ɧ, E.Lippa, ÅÚÊý¹°ÌÀ, O.Atkin, ÂÀÅIJíÈþ, °Ë¸¶¹¯Î´, A.Pizer, µÈÅÄ·ÉÇ·, M.Razar, ¾®ÃÓÀµÉ×,     K.A.Ribet, J.Coates, »Ö¼¸ÞϺ

Âè14²ó¼Â´Ø¿ôÏÀÂè13²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1975.7/15-17)  Ä»¼èÂç³Ø(¾¶)
    »°Ä»Àî¼÷°ì  ÈùʬÊýÄø¼°¤È´ûÌóɽ¸½¤Ë¤Ä¤¤¤Æ

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂå¿ô²òÀϤνôÌäÂê¡×(1975 July 29-Aug 1)(¾¶)
    ´Ø¸ý¼¡Ïº    SL(3,R) ¤ÎÂÓµåÈ¡¿ô¤Ë¤Ä¤¤¤Æ

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1975 Oct.6-   ) ¿·Êæ¹â²¹Àô À¤ÏÿÍÃÝÃæÌÐÉס¦±ºÀîÈ¥
    ÃÝÃæÌÐÉ×
    À¶¿å±ÑÉ×    Some examples of new forms 
    ÌÚȨÆƹ§    Intertwining operators and differential equations
    Æ£¸¶±ÑÆÁ    On the unitary representations of split solvable Lie groups
    ²¼Â¼Ä¾µ×    Cuspidal characters over finite classical groups
    »°Ä»Àî¼÷°ì  On a multiplicity formula
    G.Schiffmann  Distribution invariant under the orhtogonal group
    G.Schiffmann  Weil's representation --- the anisotropic case
    ¶¶ÄÞƻɧ    On Whittaker model
    ÂçƦÀ¸ÅIJí°ì   On a Paley-Wiener type theorem of de Sitter group
    ´Ø¸ý¼¡Ïº    On the zonal spherical function on SL(3,R)
    Ê¿°æ  Éð    On characters and invariant eigen-distributions

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÈùʬÊýÄø¼°¤ÈĶȡ¿ô¡×1975 Dec 17-20(¾¶)
    ÌðÌî  ´Ä¡¦´Ø¸ý¼¡Ïº  Coxeter groups ¤ËÉտ魯¤ë weighted homogeneous polynomial ¤Î micro-local structure (with Appendix on GL(2))
    ÂçÅçÍøͺ     Âоζõ´Ö¾å¤Î¼ï¡¹¤Î¶­³¦¤ËÂФ¹¤ë¶­³¦ÃÍÌäÂê

1976(¾¼51)
¿ôÍý¸¦¸¦µæ½¸²ñ¡Öɽ¸½ÏÀ¤Èintertwining operator¡×1976.Feb.16-19(¿ù±º¸÷É×Âåɽ)
    ̶ÅÄÍ롓    De Sitter ·²¾å¤Î Fourier ²òÀϤÈÀ׸ø¼°
    G.Schiffmann  Intertwining operator and Weil representation
    ¶¶ÄÞƻɧ    Sp(n) ¤Î Whittaker model
    Êö¼¾¡¹°    ¥Ý¥¢¥½¥óÀÑʬ¤ÈÈùʬÊýÄø¼°
    ¼ò°æ¹¬µÈ    Amenable °ÌÁê·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
    Ê¿°æ  Éð    Ⱦñ½ã Lie ´Ä¤Î»Øɸ¤Ë¤Ä¤¤¤Æ
    ¿·Ã«ÂîϺ    ɽ¸½¤Î¤â¤Á¤¢¤²¤Ë¤Ä¤¤¤Æ
    ÀîÃæÀëÌÀ    Í­¸ÂÂξå¤Î¥æ¥Ë¥¿¥ê·²¤ÎÊ£ÁÇ´ûÌó»Øɸ¤Ë¤Ä¤¤¤Æ
    äÇÏ¿­É§    Åù¼Á¶õ´Ö¤ËÂФ¹¤ëøÃæ·¿ÁÐÂÐÄêÍý
    ÂçƦÀ¸ÅIJí°ì  Spin(4,1)¾å¤ÎµåÈ¡¿ô¤ÎŸ³«¤Ë¤Ä¤¤¤Æ
    Æ£¸¶±ÑÆÁ    Exponential group ¤Î holomorphically induced representation ¤Ë¤Ä¤¤¤Æ
    »°Ä»Àî¼÷°ì  
    Ãö¼í  ع    Translation invariant operator in Lp  

ÆüËÜ¿ô³Ø²ñ  1976 April ¶å½£Âç³Ø
  ÆÃÊֱ̹é
    G.Schiffmann  Weil's representation attached to a quadratic form(È¡¿ô²òÀϳØ)

Âè15²ó¼ÂÈ¡¿ôÏÀ¡¦Âè14²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1981July12-14) ÀéÍÕÂç³Ø  (¾¶)
    ²¼Â¼¹¨¾´    Quasi-invariant measures on R¡ç

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1976 Oct 8-11) ÂçÍεù¶È¹¾¥ÎÅ縦½¤¥»¥ó¥¿¡¼ À¤ÏÃ¿Í Êö¼¾¡¹°
    ÃÝÃæÌÐÉ×
    ÀÄÌÚ  ÌÐ    ²¼»°³Ñ unipotent ·²¤Î  Paley-Wiener ·¿ÄêÍý¤Ë¤Ä¤¤¤Æ
    »°¾å½Ó²ð
    ¹¾¸ýÀµ¹¸    ¥¢¥¤¥¼¥ó¥·¥å¥¿¥¤¥óÀÑʬ¤ÎÁ²¶á¹ÔÆ°¤ÈÂоζõ´Ö¾å¤Î¥Õ¡¼¥ê¥¨ÊÑ´¹
    ¾¾Ëܽ¤°ì    Hyperboloid ¾å¤Î Laplacian ¤Î¸ÇÍ­ÃÍÌäÂê¤Ë¤Ä¤¤¤Æ
    ÂçƦÀ¸ÅIJí°ì  De Sitter ·²¤ÎµåÈ¡¿ô¤Ë¤Ä¤¤¤Æ
    ÊÆ»³½Ó¾¼    Invariant operators on a group of triangular matrices
    ¶¶ÄÞƻɧ    ɽ¸½¤ËÉտ路¤¿ Zeta È¡¿ô¤Ë¤Ä¤¤¤Æ
    ¾¾°æ  À¶    Í­¸ÂÂå¿ô·²¤Î Green polynomial ¤Ë¤Ä¤¤¤Æ
    ËÙÅÄÎÉÇ·    Í­¸ÂÂå¿ô·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ(Deligne-Lusztig ¤Î»Å»ö¤Î¾Ò²ð)
    ºØÆ£ÀµÉ§    non-standard analysis

ÆüËÜ¿ô³Ø²ñ  1976 Oct Åìµþ¹©¶ÈÂç³Ø
  ÆÃÊֱ̹é
    Æ£¸¶±ÑÆÁ  Exponential group ¤Î¥æ¥Ë¥¿¥êɽ¸½¤Ë¤Ä¤¤¤Æ

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶȡ¿ô¤ÈÀþ·¿ÈùʬÊýÄø¼°  V¡×1976 Oct 13-16(¾¶)
    ÂçÅçÍøͺ¡¦´Ø¸ý¼¡Ïº  Harmonic analysis on affine symmetric spaces
    ÂçÅçÍøͺ    A realization of Riemannian symmetric spaces

1977(¾¼52)
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖIndefinite inner product space ¾å¤Ø¤Î amenable group ¤Îɽ¸½¡×(1977 Feb.22-25)  ¼ò°æ¹¬µÈÂåɽ
    ÂÀÅľº°ì
    ¼ò°æ¹¬µÈ    Unitary representation of amenable group in Krein spaces
    ÅÚÀî¿¿É×    
    ËãÀ¸ÂÙ¹°
    Ìî¼δ¾¼    SU(1,1) ¤ÎÍ­¸ÂÈïʤ·²¾å¤Ç¤Î Paley-Wiener ·¿ÄêÍý
    äÇÏ¿­É§    Compact group ¤Î unitary representation (²òÀâ)

¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö»Øɸ¤ÈÉÔÊѸÇͭĶȡ¿ô¡×(1977 March 15-17)  ºØÆ£ÀµÉ§Âåɽ
    º´Ìî  ÌÐ    Æüì¤ÊȾñ½ã¥ê¡¼·²¤Î Plancherel ¸ø¼°
    À¶¿åµÁÇ·    ¼ÂȾñ½ã Lie ·²¤Îɽ¸½¤È»Øɸ¤Ë¤Ä¤¤¤Æ
    ËÙÅÄÎÉÇ·    Schmid ¤Î»Øɸ¤Î´Ø·¸¼°¤Ë¤Ä¤¤¤Æ
    ÂçÅçÍøͺ¡¦´Ø¸ý¼¡Ïº  Affine symmetric space ¤Ë¤ª¤±¤ë¶­³¦ÃÍÌäÂê
    Ê¿°æ  Éð    Î¥»¶·ÏÎó¤Îɽ¸½¤È»Øɸ
    äÇÏ¿­É§    ÉÔÊÑ¥Ù¥¯¥È¥ë¤ò¤â¤ÄÊÄÉôʬ·²
    ¹¾¸ýÀµ¹¸    Åù¼Á¶õ´Ö¾å¤ÎÈùʬÊýÄø¼°¤Ë¤Ä¤¤¤Æ

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶ¶É½ê²òÀÏ¡×(1977 Apr 8-11)(¾¶)
    ÂçÅçÍøͺ¡¦´Ø¸ý¼¡Ïº  Âоζõ´Ö¾å¤Î¼ï¡¹¤ÎÆüì¸ÇÍ­È¡¿ô¤Ë¤Ä¤¤¤Æ

ÆüËÜ¿ô³Ø²ñ  1977 Oct ÅìµþÍý²ÊÂç³Ø
  ÆÃÊֱ̹é
    ËÙÅÄÎÉÇ·  Í­¸ÂÂξå¤Î Chevalley ·²¤Î Green ¿¹à¼°¤È Weyl ·²¤Îɽ¸½(Âå¿ô³Ø)
    ¶¶ÄÞƻɧ  Reductive Lie ·²¤Îɽ¸½¤Î Whittaker model ¤Ë¤Ä¤¤¤Æ(È¡¿ô²òÀϳØ)

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1977.Oct.13-17)»°½ÅÂç³Ø À¤Ïÿͳª¹¾¹¬Çî
    Ìî¼δ¾¼    SU(1,1) ¤ÎÍ­¸ÂÈïʤ·²¾å¤Ç¤Î Paley-Wiener ·¿ÄêÍý
    º´Ìî  ÌÐ    Sp(2,R)¤Î Plancherel formula
    »°Ä»Àî¼÷°ì  Harish-Chandra ¤Î Plancherel formula¤Ë¤Ä¤¤¤Æ
    ÃÓÅÄ  ¾Ï¡¦Ã«¸ý  ¥³¥ó¥Ñ¥¯¥ÈÂоζõ´Ö¾å¤Î¥é¥×¥é¥·¥¢¥ó¤Î¸ÇÍ­ÃÍÌäÂê
    ËãÀ¸ÂÙ¹°    Special representation ¤Î¼Â¸½
    ÈôÅÄÉ𹬠   ²¹¸ÎÃο·  ¥Ö¥é¥¦¥ó±¿Æ°¤ò¤á¤°¤Ã¤Æ
    ̶ÅÄÍ롓    SU(n,1)¤ËÂФ¹¤ë Flensted-Jensen ¤Î spherical functions ¤Ë¤Ä¤¤¤Æ
    ¾¾ÌÚÉÒɧ    The orbits of affine symmetric spaces under the action of minimal parabolic subgroups
    ´¢»³ÏÂ½Ó    Chevalley ·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
     
1978(¾¼53)
ÆüËÜ¿ô³Ø²ñ  1978 April ̾¸Å²°Âç³Ø
  ÆÃÊֱ̹é
    ÂçƦÀ¸ÅIJí°ì  µåÈ¡¿ô¤Î Harish-Chandra Ÿ³«¤Ë¤Ä¤¤¤Æ(È¡¿ô²òÀϳØ)

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖĶȡ¿ô¤ÈÀþ·¿ÈùʬÊýÄø¼° VI¡×1977 June 5-8(¾¶)
    ÂçÅçÍøͺ    Âоζõ´Ö¾å¤ÎÉÔÊÑÈùʬºîÍÑÁǤΥ¹¥Ú¥¯¥È¥ë

Âè16²ó¼ÂÈ¡¿ôÏÀ¡¦Âè15²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1983July17-19) Å纬Âç³Ø (¾¶)
    ºØÆ£ÀµÉ§    non-standard analysis ¤È¤Ï²¿¤«

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1978.Oct.12-14)²»¸Í¤ÎÀ¥¸Í À¤ÏÿÍËÙÅÄÎÉÇ·
    »°¾å½Ó²ð    Ê¿°æ¤Î»Øɸ¸ø¼°¤Îñ½ã²½  
    µÈÅÄ·ÉÇ·    Æ󼡷Á¼°¤È Siegel modular form
    »³¸ý  ¶Ç    ²Ä²ò¥ê¡¼·²¤Î Affine ¹½Â¤¤Ë¤Ä¤¤¤Æ
    ÅÚÀî¿¿É×    Plancherel formula ¤Èɽ¸½¤Î¥Æ¥ó¥½¥ëÀѤÎʬ²ñ
    ²ÃÆ£¿®°ì    p¿ÊÂξå¤ÎÂå¿ô·²¤Î spherical principal series ¤Ë¤Ä¤¤¤Æ
    ¶¶ÄÞƻɧ    Selberg trace formula ¤Ë¤Ä¤¤¤Æ
    Ìî¼δ¾¼    ¤¢¤ëÉáÊ×Èïʤ·²¾å¤Ç¤Î Paley-Wiener ·¿ÄêÍý
    ÅÚ°æ±ÑÉ×    ¤¢¤ë¼ï¤Î Lie ·²¤Î Weil ɽ¸½¤Ë¤Ä¤¤¤Æ
    
1979(¾¼54)
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½¤ÈĴϲòÀÏ¡×1979.Aug.27-30 (¿ù±º¸÷É×Âåɽ)
    °æ¾å  Æ©    Í­³¦ÂоÎÎΰè¤Î³Æ¶­³¦¤ËÉտ魯¤ë¥æ¥Ë¥¿¥êɽ¸½¤È³Ë´Ø¿ô
    ¶¶ÄÞƻɧ    ºÇ¹â¥¦¥¨¥¤¥È¤ò»ý¤Äɽ¸½¤Î¥Û¥¤¥¿¥Ã¥«¡¼¥â¥Ç¥ë
    Êö¼¾¡¹°    Spherical sections of a homogeneous vector bundle
    ÌÚȨÆƹ§¡¦ÅÄÃæ  À¿  ¥¢¥Õ¥£¥óÂоζõ´Ö¾å¤Î pseudo-laplacian ¤ÎÂç°èŪ ²Ä²òÀ­¤Ë¤Ä¤¤¤Æ
    ¾¾Ëܽ¤°ì    ¥¢¥Õ¥£¥óÂоζõ´Ö¾å¤ÎÀµÂ§É½¸½¤Ë¸½¤ì¤ëÎ¥»¶¥¹¥Ú¥¯¥È¥ë
    ÏÆËÜ  ¼Â    ¥³¥ó¥Ñ¥¯¥È¥ê¡¼¥Þ¥ó¶õ´Ö¾å¤Î Schrodinger ÊýÄø¼°¤Î´ðËܲò¤Ë¤Ä¤¤¤Æ
    ̶ÅÄÍ롓    ¤¢¤ë¼ï¤Îñ½ã Lie ·²¾å¤Î1¼¡¸µ¤Î K-type ¤ò»ý¤Äµå´Ø¿ô¤È Paley-Wiener ·¿ÄêÍý
    ²Ïź  ·ò    Rank1 ¤ÊȾñ½ã Lie ·²¾å¤Î Paley-Wiener ·¿¤ÎÄêÍý
    À¾Â¼½ÓÇ·    ¸ÇÍ­µåÈ¡¿ô¤ÎÁ²¶áŪµóÆ°¤È Lp(1¡åp<¡ç)²ÄÀÑʬÀ­
    ÂçƦÀ¸ÅIJí°ì  SO0(n,1)¾å¤ÎµåÈ¡¿ô¤Ë¿ïȼ¤¹¤ë Harish-Chandra µé¿ô¤ÎÀÑʬɽ¼¨¤Ë¤Ä¤¤¤Æ
    ÅÚÀî¿¿É×    ɽ¸½¤Î¥Æ¥ó¥½¥ëÀÑ¤È Plancherel formula ¤Ë¤Ä¤¤¤Æ
    º´Ìî  ÌÐ    The Plancherel formula for Sp(n,R)
    »°Ä»Àî¼÷°ì  Compact Lie ·²¤Î¥Æ¥ó¥½¥ëÀÑɽ¸½¤Ë¤Ä¤¤¤Æ
    ¾¾ËÜÌмù    SL(2,F)¾å¤ÎÉÔÊÑĶ´Ø¿ô¤ÎüÅÀʬ²ò¤Ë¤Ä¤¤¤Æ
    ¿·²°  ¶Ñ    On a decomposability of homogeneous linear system representations of a locally compact group
    ÇßÅÄ  µü    L¡ç(G)¾å¤Î°ÜÆ°¤È²Ä´¹¤Ê isometry ¤Ë¤Ä¤¤¤Æ
    ²Ï¾å  ů    Mautner ·²¤Î´ûÌóɽ¸½¤Ë¤Ä¤¤¤Æ
    ¼ò°æ¹¬µÈ    °ÌÁê·²¤Î§±n¶õ´Ö¤Ø¤Î untary ɽ¸½¤ÎÆÃÀ­´Ø¿ô¤Ë¤Ä¤¤¤Æ

ÆüËÜ¿ô³Ø²ñ  1979 Oct  µþÅÔÂç³Ø
  ÆÃÊֱ̹é
    ²¼Â¼¹¨¾´  ̵¸Â¼¡¸µ¶õ´Ö¤ÎÊ¿¹Ô°ÜÆ°½àÉÔÊѬÅ٤ˤĤ¤¤Æ(È¡¿ô²òÀϳØ)

ÆüÊ©¥·¥ó¥Ý¥¸¥¦¥à  1979 Oct.8-14 Strasbourg Âç³Ø
    J.-L.Clerc  Transformee de Fourier spherique des espaces de Schwartz
    M.Hashizume Whittacker models for representations with highest weights
    H.Rubenthaler  Espaces vectoriels prehomogenes, sous groupes paraboliques et sl2-triplets 
    T.Shintani  On automorphic forms on a unitary group of order 3
    Guillemonat Une extension de la bande critique
    M.Mamiuda   An integral representation of the Harish-Chandra series associated with spherical functions on SO0(n,1)
    J.Y.Charbonnel  Formule de Plancherel pour les groupes resolubles connexes
    M.Flensted-Jensen  L1 boundary values
    Y.Muta      On the spherical functions with one dimensional K-type and the Paley-Wiener type theorem on some simple Lie groups
    H.Leptin    On the structure of L1-algebras
    M.Eguchi    On the Fourier transform for Riemannian symmetric spaces and Cp spaces
    M.Cowling   On complementary series
    M.Kashiwara K-types and asymptotic expansions 
    M.Duflo     Differential operators on symmetric spaces
    H.Yoshida   Weil's representations and Siegel's modular forms
    M.Khalgui   Representations des groups de Lie a radial cocompact
    H.Matsumoto Espaces riemanniens isotropes et leurs analogues discrets
    H.Midorikawa  On a Clebsh-Gordan coefficient of a certain tensor product representation
    H.Saito     On a decomposition of spaces of cusp forms and trace formula of Hecke operators
    D.Wigner    Lobatchefskii function and cohomology of SL(2)
    
   at Paris VII
    N.Tatsuuma  Duality for factor spaces


¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖStructure and representations of algebraic group¡×1979.Oct.30 
    F.Bruhat    Reductive groups on a local field and group schemes
    K.Shinoda   On Weil representatopn of Sp2n(Fq)
    T.Shoji     On the Springer representations of Chevalley groups of type Al, Bl, Cl, Dl, F
    S.Matsumoto Orbital decomposition of invariant distributions of SL(2,K)
    S.Kato      On eigenspaces of a Hecke algebra with respect to a good maximal compact subgroup of a p-adic reductive group
    T.Tanisaki  Inheritance of some invariant properties under foldings of algebraic groups
    N.Iwahori¡¦K.Koike  Some generalizations and spplications of Kostant's partition functions

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1979.Nov.26-29)Åò²Ï¸¶²¹ÀôÉßÅç´Û À¤ÏÿÍÀ¶¿åµÁÇ·
    ¼À¥  ÆÆ    Àþ·¿Âå¿ô·²¤Î°ìÍÍʬÉۤˤĤ¤¤Æ
    ´Ø¸ý¼¡Ïº    ¥¢¥Õ¥£¥óÂоζõ´Ö¾å¤ÎÉÔÊѸÇÍ­¶õ´Ö¤Ë¤Ä¤¤¤Æ
    ÀÄÌÚ  ÌÐ    SL(2,R)¤ÎÉáÊ×Èïʤ·²¾å¤Î Paley-Wiener ¤ÎÄêÍý
    ²Ïź  ·ò    SU(2,2)¾å¤Î Paley-Wiener ¤ÎÄêÍý
    ²Ï¾å  ů    ¤¢¤ë°ø»Òɽ¸½¤Îʬ²ò¤Ë¤Ä¤¤¤Æ
    ·óÅÄ  ¶Ñ    Poincare ·²¤Î´ûÌóɽ¸½¤«¤é·è¤Þ¤ë Poincare Ⱦ·²¤Î²ÄÌóÀ­¤Ë¤Ä¤¤¤Æ
    ¶¶ÄÞƻɧ    ¥Û¥¤¥¿¥Ã¥«¡¼´Ø¿ô¤ÎËþ¤¿¤¹ÈùʬÊýÄø¼°
    ¾¾Ëܽ¤°ì    ¥¢¥Õ¥£¥óÂоζõ´Ö¾å¤ÎÀµÂ§É½¸½¤Ë¸½¤ì¤ëÎ¥»¶¥¹¥Ú¥¯¥È¥ë
    ·§¸¶·¼ºî    ¥³¥ó¥Ñ¥¯¥ÈÅù¼Á¶õ´Ö¾å¤Î Fourier ÊÑ´¹¤ÈÉÔÊÑÈùʬºîÍÑÁǤδðËܲò
    ³ª¹¾¹¬Çî    ¤¢¤ë¼ï¤Î¥Ù¥¯¥È¥ë¾ì¤Î Lie ´Ä¤È¤½¤Î cohomology
    ËÙÅÄÎÉÇ·    Weyl ·²¤Îɽ¸½
    º´Æ£Ç½¹Ô    ¤¢¤ë¼ï¤ÎÎ¥»¶·²¤Î̵¸Â¼¡¸µ¥æ¥Ë¥¿¥êɽ¸½

1980(¾¼55)
ÆüËÜ¿ô³Ø²ñ  1980 April  
  ÆÃÊֱ̹é
    ¹¾¸ýÀµ¹¸  ÂоΥ꡼¥Þ¥ó¶õ´Ö¾å¤Î¥Õ¡¼¥ê¥¨²òÀÏ¡½ºÇ¶á¤ÎȯŸ¡½  (È¡¿ô²òÀϳØ)
    ²¬ËÜÀ¶¶¿  ²ÄÈùʬ¿ÍÍÂξå¤ÎĴϲòÀÏ(´ö²¿³Ø)

¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö¥ê¡¼´Ä¡¦Âå¿ô·²¤È¤½¤Î¼þÊÕ¡×(1980 May 29-June 2)(¾¶)
    ¾®ÃÓÏÂɧ    Kac-Moody Lie ´Ä¤È Macdonald type ¤Î¹±Åù¼°
    ¿¹ÅÄ  ½ã    Kac ¤Î Graph ɽ¸½ÏÀ¤Î¾Ò²ð    Root ¤Î¸øÍý·Ï¤Ë¤Ä¤¤¤Æ
    ëºê½ÓÇ·    ¥°¥é¥Õ¤Îɽ¸½ÏÀ¤Ë¤ª¤±¤ë Kac ¤Î·ë²Ì¤Î¾Ò²ð
    ´Ø¸ý¼¡Ïº¡¦À¶¿åÊݹ°  Subregular-singularities in a symmetric space

Âè19²ó¼Â´Ø¿ôÏÀÂè18²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1980.Jul 3-5)  Ê¡²¬Âç³Ø(¾¶)
    ·§¸¶·¼ºî    Ⱦñ½ã Lie ·²¤Î Riemann-Lebesgue ¤ÎÊäÂê

ÆüËÜ¿ô³Ø²ñ  1980 Oct  °¦É²Âç³Ø
  ÆÃÊֱ̹é
    ¸åÆ£¼éË®  ¥ê¡¼·²¤Î¶ËÂç¥È¡¼¥é¥¹¤ò¤á¤°¤Ã¤Æ(´ö²¿³Ø)

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à (1980.Oct.5-8)Ä»¼è»ÔÇòÅƲñ´Û  À¤Ïÿͷ§¸¶·¼ºî
    ¾¾Ëܽ¤°ì    Discrete series for an affine symmetric space
    ÂçÅçÍøͺ    Ⱦñ½ãÂоζõ´Ö¾å¤ÎĴϲòÀÏ
    ÀÄÌÚ  ÌÐ    Ϣ³¼ç·ÏÎóɽ¸½¤Î¥Æ¥ó¥½¥ëÀѤˤĤ¤¤Æ
    º£ÌîÂÙ»Ò    discrete series ¤Î multiplicity formula ¤Ë¤Ä¤¤¤Æ¡½Spin(2m,1),SU(n,1)¤Î¾ì¹ç¡½¡½
    Ê¿°æ  Éð    unipotent orbital integral ¤Ë¤Ä¤¤¤Æ
    ³á¸¶  µ£    ²Ä²ò¥ê¡¼·²¤Î¥æ¥Ë¥¿¥êɽ¸½
    Æ£¸¶±ÑÆÁ    ²Ä²ò·²¤Ë¤ª¤±¤ë intertwining operator ¤È¤½¤Î±þÍÑ
    ·óÅÄ  ¶Ñ    Poincare ·²¤Î´ûÌóɽ¸½¤Î Poincare Ⱦ·²¤Ë´Ø¤¹¤ë²ÄÌóÀ­
    »³ÅÄ͵»Ë    Relative invariants of prehomogeneous vactor spaces and the realization of certain unitary representations
    »°Ä»Àî¼÷°ì  Âоζõ´Ö¾å¤Î Hardy class ¤Ë¤Ä¤¤¤Æ

Harmonic Analysis on Semisimple Symmetric Spaces  (1980. Nov.10 -13)  ¿¦¶È·±ÎýÂç³Ø¹»     À¤ÏÿÍÂçÅçÍøͺ
  An Introduction to Harmonic Analysis on Semisimple Symmetric Spaces
    ÂçÅçÍøͺ    ½ø,³ÎÄêÆðÛÅÀ·¿¤ÎÈùʬÊýÄø¼°           
    ´Ø¸ý¼¡Ïº    ¥ë¡¼¥È·Ï,¥ê¡¼·²¤Î¹½Â¤                 
    ¾¾ÌÚÉÒɧ    ·²¤Îʬ²òÄêÍý                           
    ÂçÅçÍøͺ(´Ø¸ý¼¡Ïº)  Âоζõ´Ö¤Î¼Â¸½¡¢¼ç·ÏÎóɽ¸½             
    ´Ø¸ý¼¡Ïº    Poisson ³Ë,¸ÇÍ­´Ø¿ô¤ÎÀÑʬɽ¼¨          
    ÂçÅçÍøͺ    Î¥»¶·ÏÎóɽ¸½                           
    ´Ø¸ý¼¡Ïº    c-functions                             
    ÂçÅçÍøͺ    Fourier ÊÑ´¹¡¦Plancherel ¤ÎÄêÍý         
  Related Topics     
    »°¾å½Ó²ð   ¤¢¤ëÎ¥»¶·ÏÎó¤Î»Øɸ
    »³ÅÄ͵»Ë   ³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤ÎÁêÂÐÉÔÊѼ°¤È¤¢¤ë¥æ¥Ë¥¿¥êɽ¸½¤Î¼Â¸½ 
    Çð¸¶Àµ¼ù    Kazhdan-Lustig Conjecture
    ¾¾Ëܽ¤°ì    Flensted-Jensen ¤ÎÏÀʸ(Discrete series for semisimple symmetric spaces)¤Î¾Ò²ð
    ²Ïź  ·ò   ´ûÌó¤Êɽ¸½¤Î»Øɸ¤Ë´Ø¤¹¤ë Atiyah ¤Î lecture note ¤Î¾Ò²ð¤È symmetric space ¤Ø¤Î±þÍÑ
    Êö¼¾¡¹°    G/K¾å¤Î vector bundle ¤Ø¤Î Poisson ÊÑ´¹

1981(¾¼56)
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÅù¼Á¶õ´Ö¾å¤ÎĴϲòÀÏ¡×1981.Feb.19-21(¹¾¸ýÀµ¹¸Âåɽ)
    °æ¾å  Æ©    Í­³¦Åù¼ÁÎΰè¤ÎÀµÂ§´Ø¿ô¤«¤é¤Ê¤ë¥Ò¥ë¥Ù¥ë¥È¶õ´Ö¤È¤½¤Î¾å¤Ø¤Îľ¸ò¼Í±Æ
    ¶¶ÄÞƻɧ    ¥Û¥¤¥¿¥Ã¥«¡¼´Ø¿ô¤È¸ÍÅijʻÒ
    ݯ°æ¹§½Ó    ̵¸Â¼¡¸µ²óž·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
    Êö¼¾¡¹°    Åù¼Á¥Ù¥¯¥È¥ë«¾å¤ÎÉÔÊÑÈùʬºîÍÑÁÇ
    ÂçƦÀ¸ÅIJí°ì  Lorentz ·²¾å¤Î C-´Ø¿ô
    ·§¸¶·¼ºî    Âоζõ´Ö¾å¤Î Lp ²òÀÏI
    ¹¾¸ýÀµ¹¸    Âоζõ´Ö¾å¤Î Lp ²òÀÏII
    ²Ïź  ·ò    ¼Â rank1¤ÊȾñ½ã Lie ·²¾å¤Î Lp Fourier ²òÀÏ
    Ìî¼δ¾¼    Oscillator ·²¤Î Paley-Wiener ·¿ÄêÍý
    ÅÚÀî¿¿É×    SL(2,k)¤Îɽ¸½¤Î¥Æ¥ó¥½¥ëÀÑII

ÆüËÜ¿ô³Ø²ñ  1981 April  µþÅÔÂç³Ø
  ÆÃÊֱ̹é
    äÇÏ¿­É§    ¾¦¶õ´Ö¾å¤ÎøÃæ·¿ÁÐÂÐÄêÍý(È¡¿ô²òÀϳØ)

Âè20²ó¼Â´Ø¿ôÏÀÂè19²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1981.July16-18)  ÉÙ»³Âç³Ø  (¾¶)
    ²Ïź  ·ò    Ⱦñ½ã¥ê¡¼·²¾å¤Ç¤Î¥Õ¡¼¥ê¥¨²òÀÏ
    ÌÚȨÆƹ§    Ⱦñ½ãÂоζõ´Ö¾å¤ÎÉÔÊÑÀÑʬ¤Ë¤Ä¤¤¤Æ

¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö¥¢¥Õ¥¡¥¤¥óÂоζõ´Ö¾å¤ÎĴϲòÀÏ¡×1981.July20-23(ÂçÅçÍøͺÂåɽ)
    ³á¸¶  µ£    ÈóI·¿·²¤Î Plancherel ¸ø¼°¤Ë¤Ä¤¤¤Æ
    ²Ï¾å  ů    ¤¢¤ëC*-ÀܹçÀѤÎɽ¸½¤Îʬ²ò¤Ë¤Ä¤¤¤Æ
    ÌÚȨÆƹ§    Ⱦñ½ãÂоζõ´Ö¾å¤Îµ°Æ»ÀÑʬ¤Ë¤Ä¤¤¤Æ
    º´Ìî  ÌÐ    GL(n,C)/GL(n,R)¾å¤ÎÉÔÊÑÂÓµåĶ´Ø¿ô¤È Plancherel ¸ø¼°
    ¾¾ÌÚÉÒɧ    Ⱦñ½ãÂоζõ´Ö¤ÎÎ¥»¶·ÏÎóɽ¸½
    »°Ä»Àî¼÷°ì  ²ÄÌó¤Ê¼ç·ÏÎóɽ¸½¤Ë¤Ä¤¤¤Æ
    ²£»³Ã¤¼£
    ±ºÀî  È¥    ¶É½êÂоζõ´Ö¾å¤Î¥é¥×¥é¥·¥¢¥ó¤Î¸ÇÍ­ÃÍÌäÂê¤Ë¤Ä¤¤¤Æ
    ÂçÅçÍøͺ    Âоζõ´Ö¤Î¼ï¡¹¤Î¶­³¦¤ÎÂФ¹¤ë¶­³¦ÃÍÌäÂê
    ´Ø¸ý¼¡Ïº    Invariant eigendistributions and nilpotent orbits
    Çð¸¶Àµ¼ù    ɽ¸½ÏÀ¤Ë¤ª¤±¤ëÈùʬÊýÄø¼°
    ËÙÅÄÎÉÇ·    Weyl ·²¤Îɽ¸½II
    ¸åÆ£¼éË®    Í­¸Â¼¡¸µÉ½¸½¤ÎÍ­¸ÂÉôʬ¤È¤½¤Î±þÍÑ
    ̶ÅÄÍ롓    ¥Ý¥¢¥ó¥«¥ì·²¾å¤Î¥Õ¡¼¥ê¥¨ÊÑ´¹¤Ë¤Ä¤¤¤Æ
    ¹â¶¶Îé»Ê    SU(2)¤Î Clebsch-Gordan ·¸¿ô¤Ë´Ø¤¹¤ë combinatorial relation¤Ë¤Ä¤¤¤Æ

¡ÖȾñ½ã¥ê¡¼·²¤Îɽ¸½¤ÈĴϲòÀϡץµ¥Þ¡¼¥»¥ß¥Ê¡¼(1981.Aug.3-6)¿¦¶È·±ÎýÂç³Ø¹»
    Êö¼¾¡¹°    Åù¼Á¥Ù¥¯¥È¥ë«¤Ë¤ª¤±¤ëÉÔÊÑÈùʬºîÍÑÁǤδĤι½Â¤
    º´Ìî  ÌÐ    Ⱦñ½ã·²¤Ë¤ª¤±¤ëWeyl¤ÎÀÑʬ¸ø¼°¤È Harish-Chandra ÊÑ´¹¤Ë¤Ä¤¤¤Æ
    ÂçƦÀ¸ÅIJí°ì  ¼ç·ÏÎóɽ¸½¤Î infinitesimal operators
    º´Æ£  Ǧ    Unipotent variety ¤Î¶­³¦¤Ë¤Ä¤¤¤Æ
    ²ÃÆ£Ëö¹­    SU(n,1)¤ÎÊÝ·¿·Á¼°¤Î¼¡¸µ¸ø¼°¤Ë¤Ä¤¤¤Æ

ÆüËÜ¿ô³Ø²ñ  1981 Oct  »³¸ýÂç³Ø
  ÆÃÊֱ̹é
    ÏÆËÜ  ¼Â    Gauge ·²¤Î unitary ɽ¸½(È¡¿ô²òÀϳØ)

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1981.Oct.10-11)¼¯»ùÅçÂç³Ø¶µÍÜÉô    À¤Ïÿͼò°æ¹¬µÈ
    ÅÚ°æ±ÑÉ×    Kac-Moody Lie ´Ä¤Î Verma modules ¤Ë¤Ä¤¤¤Æ
    Çð¸¶Àµ¼ù    Ⱦñ½ã¥ê-·²¤Îɽ¸½ÏÀ¤ÈÀþ·¿ÊÐÈùʬÊýÄø¼°·Ï(I,II)
    ÀÄÌÚ  ÌÐ    SU(2,n) ¤ÎÈïʤ·²¾å¤Ç¤Î Payley-Wiener ·¿¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ
    »Þ¾¾  ¹§    ¥³¥ó¥Ñ¥¯¥È·²(Lie ·²¤È¤Ï¸Â¤é¤Ì)¾å¤Î differential calculus
    ËãÀ¸ÂÙ¹°    Action of simple groups on affine building and related topics
    ¿ù±º¸÷É×   Ⱦñ½ã¥ê¡¼·²¤ÎøÃæÁÐÂÐÄêÍý
    ÅÚÀî¿¿É×    SL2(k) ɽ¸½¤Î¥Æ¥ó¥½¥ëÀÑ(²ÄÌó¤Ê¼ç·ÏÎóɽ¸½¤Î¾ì¹ç)
    ¾¾ËÜÌмù    GLn(k) ¾å¤ÎÉÔÊÑĶ´Ø¿ô¤Ë¤Ä¤¤¤Æ
    ´¢»³ÏÂ½Ó   ¸Åŵ·²¤Î Coxeter Îà¤ËÉտ路¤¿¥È¡¼¥é¥¹¤Ë¤Ä¤¤¤Æ

1982(¾¼57)
Âå¿ô¥»¥ß¥Ê¡¼¡Ö¥³¥Û¥â¥í¥¸¡¼¤Èɽ¸½ÏÀ¡×(1982 Aug 9-11)¾ëºê²¹Àô
    ·Ë  ÍøÇ·    Derived category ¤È Verdier duality
    ëºê½ÓÇ·¡¦ËÙÅÄÎÉÇ·  Intersection cohomology ¤È holonomic system
    ëºê½ÓÇ·    Ê£ÁÇȾñ½ã Lie ´Ä¤Îɽ¸½ÏÀ¤ÈD-²Ã·²¤ÎÍýÏÀ
    ²ÃÆ£¿®°ì¡¦ËÙÅÄÎÉÇ·  Springer ɽ¸½¤È¤½¤Î¼þÊÕ
    ËÙÅÄÎÉÇ·    The Weyl group as monodromies and nilpotent orbits ¡½ after M.Kashiwara
    Àõ°æ¾ÈÌÀ    Deligne-Lusztig ¿¹à¼°¤Î Zeta È¡¿ô¤Ë¤Ä¤¤¤Æ

ɽ¸½ÏÀÀçÂ楷¥ó¥Ý¥¸¥¦¥à(1982.March29)    ÅìËÌÂç³ØÍý³ØÉô
    Æ£¸¶±ÑÆÁ  
    ¶¶ÄÞƻɧ    Whittaker functions on semisimple Lie groups
    ËÙÅÄÎÉÇ·¡¦Ã«ºê½ÓÇ·  Some topics related to nilpotent orbits
    ¾¾ÌÚÉÒɧ¡¦ÂçÅçÍøͺ  Discrete series for affine symmetric spaces
    M.Duflo     Construction of a set of irreducible unitary representations of real algebraic Lie groups, sufficiently big to decompose L2(G)

ÆüËÜ¿ô³Ø²ñ  1982 March
    ¹Ô¼ÔÌÀɧ    Í­¸Â¤ª¤è¤Ó p- ¿Ê Chevalley ·²¤Î Hecke ´Ä¤ËÉտ路¤¿ Poincare µé¿ô¤È¤½¤Î°ìÈ̲½(Âå¿ô³Ø)
    M.Duflo     On a conjecture of Michele Vergne on the Poisson-Plancherel formula: the case of complex Lie groups(È¡¿ô²òÀϳØ)
    

Âè21²ó¼Â´Ø¿ôÏÀÂè20²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1982.July15-17)  ´ØÀ¾Ã϶èÂç³Ø¥»¥ß¥Ê¡¼ ¥Ï¥¦¥¹  (¾¶)
    ¾¾ÌÚÉÒɧ   Ⱦñ½ãÂоζõ´Ö¾å¤ÎÎ¥»¶·ÏÎóɽ¸½¤Ë¤Ä¤¤¤Æ

¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½¤ÈÈó²Ä´¹Ä´Ï²òÀÏ¡×1982.July20-23(¿·²°¶ÑÂåɽ)
    ÇßÅÄ  µü    Sp(m,R)¤ÎÉáÊ×Èïʤ·²¤Îɽ¸½¤È¿ÊÑ¿ô  Bessel  È¡¿ô
    »³ÅÄ͵»Ë    Shilov  ¶­³¦¾å¤Î¥Ù¥¯¥È¥ëÃÍÈ¡¿ô¤È  Weil  ɽ¸½
    ´¢»³Ï½ӡ¦ÅÚ°æ±ÑÉ×  p-¿Ê  Chevalley  ·²¤Î¶ËÂç  K-¥È¡¼¥é¥¹¤Î¤¢¤ë¶¦ÌòÎà¤Ë¤Ä¤¤¤Æ
    ¼ã»³Àµ¿Í    SU(n,1) (n¡æ2)¤Î compact ¾¦¶õ´Ö¤Ë¤ª¤±¤ë Selberg ·¿ zeta ´Ø¿ô
    »Þ¾¾  ¹§    ¥³¥ó¥Ñ¥¯¥È·²¾å¤Î²ÄÈùʬ´Ø¿ô
    ²ÃÆ£Ëö¹­    SU(n,1)¤ÎÊÝ·¿·Á¼°¤Î¼¡¸µ¸ø¼°¤Ë¤Ä¤¤¤Æ
    ÂçƦÀ¸ÅIJí°ì  Schrodinger ÊýÄø¼°¤Î¸ÇÍ­²ò¤È·²¤Îɽ¸½
    ²Ïź  ·ò    Lie ·²¾å¤ÎÁíÏÂË¡
    äÇÏ¿­É§    (ax+b)·²¤Î Chevalley-¿ù±º·¿Ê£ÁDz½
    ¶¶ÄÞƻɧ    ³¬¿ô1Èó¥³¥ó¥Ñ¥¯¥ÈÂоζõ´Ö¾å¤ÎĴϲòÀϤȤ½¤Î±þÍÑ
    ݯ°æ¹§½Ó    ̵¸Â¼¡¸µ¥æ¥Ë¥¿¥ê·²¤Î Peter-Weyl ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ

ɽ¸½ÏÀ¥µ¥Þ¡¼¥»¥ß¥Ê¡¼(1982.Aug20-23)ÂçÄ®»Ô  À¤ÏÿͲÏź·ò¡¦Ä»°æ¿·¿Í
    ±ºÀî  È¥    Í­¸Â¶À±Ç·²¤È¥é¥×¥é¥·¥¢¥ó¤Î¶­³¦ÃÍÌäÂê ¡½¡½ 4¼¡¸µ°Ê¾å¤ÎÂÀ¸Ý¤Î·Á¤ò ²»¤ÇÄ°¤­Ê¬¤±¤ë¤³¤È¤Ï¤Ç¤­¤Ê¤¤¡½¡½ 

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1982.Nov.17-19)    ²Ï¸ý¸Ð ÉٻκùÁñ
    ¼ã»³ Àµ¿Í   Real rank 1¤ÎȾñ½ã Lie ·²¤Î compact ¾¦¶õ´Ö¤Ë¤ª¤±¤ë
                Selberg zeta ´Ø¿ô¤Î½ôÀ­¼Á¤È¤½¤Î±þÍѤˤĤ¤¤Æ
    ´Ø¸ý¼¡Ïº    Invariant measures on orbits associated to a symmetric pair
    ³á¸¶  µ£    Heisenberg ·¿·²¤Îɽ¸½ÏÀ
    ·óÅÄ  ¶Ñ    ISU(n) ¤ÎÉÔÊÑ¿¹à¼°´Ä
    °ËÆ£ÀµÇ·    Poisson ¶õ´Ö ¤È discrete ·²¾å¤Î convolution ÊýÄø¼°
    ¿ù±º¸÷É×    Âè°ì¼ï¥ë¡¼¥È·Ï¤È Cartan subalgebra ¤Î¶¦ÌòÎà
    »°Ä»Àî¼÷°ì  Sp(n,Z) ¤ÎÂʱ߸µ¤Î¶¦ÌòÎà¤Ë¤Ä¤¤¤Æ
    ËãÀ¸ÂÙ¹°    SU(3.f) ¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
    ¹¾¸ýÀµ¹¸    Reductive Lie ·²¾å¤Î Eisenstein ÀÑʬ¤ÎÁ²¶áŸ³«¤Ë¤Ä¤¤¤Æ
    ·§¸¶·¼ºî    Riemann Âоζõ´Ö¾å¤Î¤Î Fourier ÊÑ´¹¤ËÂФ¹¤ëHardy-Littlewood-Paley ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ
    ²Ïź  ·ò    J.Arthur ¤Î»Å»ö¤Î¾Ò²ð¡½¡½Paley-Wiener ·¿¤ÎÄêÍý¤Î²ò·è

1983(¾¼58)
¿ôÍý¸¦¸¦µæ½¸²ñ 1983.Feb22-26(¾¶)
    Ê¿°æ  Éð    ²¬ËÜ¡¦ºù°æ¤Î O(¡ç),U(¡ç) ¤Î Peter-Weyl ¤ÎÄêÍý¤Î¾Ò²ð

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÎϳطϤȥ꡼·²¤Îɽ¸½ÏÀ¡×1983.June20-22  (²¬ËÜÀ¶¶¿Âåɽ)
    °æ°ËÀ¶Î´¡¦ÅÏÊÕ¿­°ì  Âоζõ´Ö¾å¤Î geodesic flow ¤Î´°Á´ÀÑʬ²ÄǽÀ­
    ÅÄÃæÍÎÊ¿    Kac-Moody group(Kac-Peterson ¤Î»Å»ö¤Î¾Ò²ð)
    ÏÆËÜ  ¼Â    Basic representations of exteded affine Lie algebras
    B.Kostant   Gauss-Kummer formula
    ¾¾Ëܵ׵Á    Ⱦñ½ãÂоζõ´Ö¤Î spherical K-type ¤Î¤¢¤ë¼ï¤Î¶ñÂÎŪɽ¼¨¤Ë¤Ä¤¤¤Æ
    Ìî¼δ¾¼    A description of a space of holomorphic discrete series by means of the Fourier transform on the Shilov boundary
    ²Ïź  ·ò    Atoms and molecules on Riemannian symmetric spaces
    ¹¾¸ýÀµ¹¸   On the asymptotic behavior of the generalized spherical functions on semisimple Lie groups
    Floyd L. Williams  Some new results on L2(§¤¡ÀG) multiplicities
    ëºê½ÓÇ·    ´ú¿ÍÍÂξå¤Î holonomic system ¤Î characteristic cycle ¤È Weyl ·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
    ²ÃÆ£¿®°ì    On the Kazhdan-Lusztig polynomials for affine Weyl groups

Âè22²ó¼Â´Ø¿ôÏÀÂè21²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1983.July22-24) ´ä¼êÂç³Ø  (¾¶)
    ²Ï¾å  ů    ÈóI·¿É½¸½¤Î´ûÌóʬ²ò¤Ë¤Ä¤¤¤Æ

ÆüËÜ¿ô³Ø²ñ    1983 Sept  Áá°ðÅÄÂç³Ø
  ÆÃÊֱ̹é
    ·§¸¶·¼ºî    Riemann Âоζõ´Ö¾å¤Î Lp È¡¿ô¤Îµå Fourier ÊÑ´¹¤Ë¤Ä¤¤¤Æ(È¡¿ô²òÀϳØ)

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1983.Nov.16-19)»³Ãæ²¹Àô¤Û¤¯¤ê¤¯Áñ  À¤Ïÿͻ°¾å½Ó²ð
    À¾»³  µý    Tensoring method for semisimple groups
    ¿¥Åŧ¹¬    Automorphic forms, L-functions, and periods integrals
    ÏÆËÜ  ¼Â¡¦»³ÅÄ͵»Ë  Irreducible decompositions of Fock representations of the Virasoro algebra
    ÃÝËܵÁÉ×    ¥Ù¥­Îí¥ê¡¼´Ä¤ÎʬÎà
    ³á¸¶  µ£    C*ͶƳɽ¸½¤Ë¤è¤ë¼«Í³·²¤Îɽ¸½
    ´Ø¸ý¼¡Ïº    Remarks on involutions on a root system
    ̶ÅÄÍ롓    Lorentz ·²¤È Euclid Fourier ÊÑ´¹
    ÂçƦÀ¸ÅIJí°ì  SL(2,R)¾å¤Î conical distributions
    ¹¾¸ýÀµ¹¸    SU(1,1)¾å¤Î Paley-Wiener ·¿ÄêÍý¤È Campoli¤Î¾ò·ï 
    Æ£¸¶±ÑÆÁ

¸¦µæ½¸²ñ¡Öɽ¸½ÏÀ¡×  1983 Nov.25-         µþÂçÍý³ØÉô
    Í­ÌÚ  ¿Ê¡¦»ûÅÄ  »ê  ¥Ù¥­Îí¡¦²Ä²ò Lie ·²¤Î´ûÌó¥æ¥Ë¥¿¥êɽ¸½
    »°ÎØůÆ󡦿ÀÊÝÆ»É×  ¥¢¥Õ¥£¥ó¥ê¡¼´Ä¤Îɽ¸½¤Îʬ´ô§¤ËÂФ¹¤ëÁÐÂÐÀ­¤Ë¤Ä¤¤¤Æ
    ¿¹ÅÄ  ½ã    Áжʷ¿ Kac-Moody ¥ê¡¼´Ä
    Simons      ·²¤Îɽ¸½¤ÈÈóÀþ·ÁÊýÄø¼°
    ¿ùÂô¡¦ÆÁ»³  ´ö²¿³ØŪÎ̻Ҳ½
    µÈÅÄ        °ì°Õ²½
    ²¬ËÜÀ¶¶¿    Einstein-Maxwell ÊýÄø¼°¤Î solution ¤Î¶õ´Ö¤Ë Kac-Moody Lie ·²¤¬ transitive ¤ËºîÍѤ¹¤ë
    Ê¿°æ  Éð    ¥ê¡¼·²¤Îɽ¸½¤È¥ê¡¼´Ä¤Îɽ¸½
    ¹â¶¶Îé»Ê    Lorentz ·²¤Îɽ¸½¤ÈµåÈ¡¿ô
    ÏÆËÜ  ¼Â    Kac-Moody Lie algebra ¤Î character formula  
              
Åù¼Á¶õ´Ö¾å¤ÎĴϲòÀÏ(1983.Dec.19-21)ÅìÂçÍý³ØÉô     À¤ÏÿͿù±º¸÷Éס¦¹¾¸ýÀµ¹¸
    ¶¶ÄÞƻɧ    Ⱦñ½ã¥ê¡¼·²¾å¤Î¥Û¥¤¥¿¥Ã¥«¡¼´Ø¿ô¤ÈÎ̻ҸÍÅijʻҤΥ¹¥Ú¥¯¥È¥ëʬ²ò
    ´Ö²¼¹îºÈ    ³¬¿ô2¥³¥ó¥Ñ¥¯¥È¥ê¡¼¥Þ¥óÂоζõ´Ö¤ÎÂÓµå´Ø¿ô¤Ë¤Ä¤¤¤Æ
    ²Ïź  ·ò    Ⱦñ½ã¥ê¡¼·²¾å¤Î¥Õ¡¼¥ê¥¨¡¦¥Þ¥ë¥Á¥×¥é¥¤¥ä¡¼¤Ë¤Ä¤¤¤Æ
    ¹¾¸ýÀµ¹¸    ¥Ú¡¼¥ê¡¼¡¦¥¦¥¤¡¼¥Ê¡¼·¿ÄêÍý¤Ë¤ª¤±¤ë¥«¥ó¥Ý¥ê¤Î¾ò·ï¤Ë¤Ä¤¤¤Æ
    º´Ê¬ÍøË­    ñ°Ì±ßÈľå¤Î¥Õ¡¼¥ê¥¨Ä¶´Ø¿ô¤Ë¤Ä¤¤¤Æ
    ²Ïź  ·ò    Clozel-Delorme ¤Î Paley-Wiener ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ
    ÅÚ°æ±ÑÉ×    ´ÊÌó²ÄǽÂå¿ô·²¤ÎÂйç¤Ç°ÂÄê¤Ê¶ËÂçÎØ´Ä·²
    ¶¶ÄÞƻɧ    ¼«Í³·²ÃͼÌÁü¤Î¤Ê¤¹·²¤Î´ûÌóɽ¸½
    ¼ã»³Àµ¿Í    ¥¬¥¦¥¹¡¦¥¯¥ó¥Þ¡¼¤Î¸ø¼°¤Î¥³¥¹¥¿¥ó¥È¤Ë¤è¤ë¾ÚÌÀ¤Ë¤Ä¤¤¤Æ
    Æ£¸¶±ÑÆÁ    Exponential Group ¤Î¤¢¤ë¼ï¤ÎÅù¼Á¶õ´Ö¤Ë¤Ä¤¤¤Æ

1984(¾¼59)
ÆüËÜ¿ô³Ø²ñ  1984 April  ÂçºåÂç³Ø
  ÆÃÊֱ̹é
    ÏÆËÜ  ¼Â    Kac-Moody Lie ´Ä¤Î»Øɸ¸ø¼°(´ö²¿³Ø)
    ´Ø¸ý¼¡Ïº    The nilpotent subvariety of the tangent space of a symmetric space(È¡¿ô²òÀϳØ)

Âè23²ó¼Â´Ø¿ôÏÀÂè22²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1984.July24-26)  ΰµåÂç³Ø  (¾¶)
    ¶¶ÄÞƻɧ    Åù¼Á¶õ´Ö¾å¤ÎĴϲòÀϤÈÎÌ»ÒÀÑʬ²Äǽ·Ï
    »³¾å  ¼¢    Hilbert algebra associated with coadjoint orbits

ÆüËÜ¿ô³Ø²ñ  1984 Oct. ÅìµþÂç³Ø
  Áí¹ç¹Ö±é
    ËÙÅÄÎÉÇ·    ¥Û¥í¥Î¥ß¡¼·Ï¤È¤·¤Æ¤Î Harish-Chandra ÊýÄø¼°
  ÆÃÊֱ̹é
    ÂçÅçÍøͺ    Ⱦñ½ãÂоζõ´Ö¾å¤ÎĴϲòÀÏ(È¡¿ô²òÀϳØ)
    ÀîÃæÀëÌÀ    °ìÈ̲½¤µ¤ì¤¿ Gelfand-Graev ɽ¸½¤È³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤Î Gauss ÏÂ(Âå¿ô³Ø)
    ÅÚ²°¾¼Çî    Virasoro algebra ¤Î  Fock ɽ¸½¤ÈÊÐÈùʬÊýÄø¼°(´ö²¿³Ø)

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1984.Oct.31-Nov.3) °ËƦĹ²¬²¹Àô ÀéºÐÁñ  À¤Ïÿ͵ܺê¹À
    »³²¼  Çî    Ⱦñ½ã¥ê¡¼·²¤Î generalized Gelfand-Graev ɽ¸½¤Ë¤Ä¤¤¤Æ
    ²¬ËÜÀ¶¶¿¡¦Âô¹¾Î´°ì¡¦ÅÚ°æ±Ñͺ¡¦ÇÏÅç  Àµ  Einstein-Maxwell ÊýÄø¼°¤È²ò¤ÎÊÑ´¹·²
    ÂçÅçÍøͺ    µåÈ¡¿ô¤ÎÁ²¶áµóÆ°¤Ë¤Ä¤¤¤Æ
    À¾»³  µý    Ⱦñ½ã·²¤Î virtual character module ¤È Weyl ·²¤Îɽ¸½
    »³¾å  ¼¢    The type of von Neumann algebras associated with a certain transitive groupoid
    ¾¾ÌÚÉÒɧ    Closure relation for orbits on affine symmetric spaces under the action of minimal parabolic subgroups
    ´¢»³ÏÂ½Ó    GLn, SLn, Sp2n¤Î¶ËÂçÎØ´ÄÉôʬ·²¤Î¶¦ÌòÎà¤ÎʬÎà
    ÇßÅÄ  µü    ¸Åŵ Lie ´Ä¤Î¶ÒÎí·²¤Î¶¦íÃÀ­¤Èɽ¸½¤Î¥Æ¥ó¥½¥ëÀѤˤĤ¤¤Æ
    ¾¾Ëܵ׵Á     SU(2,2) ¤Ë¤ª¤±¤ë Cohomological Hardy Space

1985(¾¼60)
¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¾å¤ÎĴϲòÀϤȤ½¤Î±þÍÑ¡×1985.Jan.16-19(°ÂÆ£¾Ò°ìÂåɽ)
    Ê¿°æ  Éð    Lie super-algebra¤Î¡Èunitary"ɽ¸½
    ÀÄËÜÏÂɧ    Problem of eigenfunction expansion on discrete set
    º´Ê¬ÍøË­    ¼ÂÁжʷ¿Âоζõ´Ö¤Î Fourier ÊÑ´¹
    ¹ÓÌÚÉÔÆóÍÎ  Indecomposable representations with invariant inner product¡½¡½A theory of Gupta-Bleuer
    ´Ø¸ý¼¡Ïº    ¶ÒÎí¸µ¤È Cayley ÊÑ´¹
    ÂÀÅÄÂöÌé    On nilpotent orbits associated to classical symmetric pairs
    ºØÆ£  ËÓ    On the associate cycles of modules with highest weight
    À¾»³  µý    Virtual character module for semisimple Lie groups
    »°¾å½Ó²ð    Sp(n,R) ¤Î»Øɸ¸ø¼°¤ÈÉÔÊѸÇͭĶ´Ø¿ô¤Î»ý¤Á¾å¤²¤Ë¤Ä¤¤¤Æ
    ¶¶ÄÞƻɧ    ÀÑʬ²Äǽ¤ÊÎÌ»ÒnÂÎÌäÂê
    ³ª¹¾¹¬Çî    Virasoro algebra ¤Î Fockɽ¸½I
    ÅÚ²°¾¼Çî    Virasoro algebra ¤Î Fockɽ¸½II
    ÀÄÌÚ  ÌС¦²ÃÆ£Ëö¹­  ¤¢¤ë¼ï¤ÎȾñ½ãÂоζõ´Ö¾å¤ÎÉÔÊѸÇͭĶ´Ø¿ô¤ÎÀܳ¸ø¼°
    ÃæÀ¾  ê÷    ÁÇγ»ÒʪÍý³Ø¤Ë¤ª¤±¤ëĶÂоÎÀ­¤ÈBRSÂоÎÀ­

Âè24²ó¼Â´Ø¿ôÏÀÂè23²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1985.July18-20)  Ê¡ÅçÂç³Ø    (¾¶)
    ´Ø¸ý¼¡Ïº    Âоζõ´Ö¾å¤Î Poisson ÊÑ´¹¤Ë¤Ä¤¤¤Æ

¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½¤Î´ö²¿³ØŪ¼Â¸½¡×1985.July22-25 (»°Ä»Àî¼÷°ìÂåɽ)
    ¶â¹ÔÁÔÆó    °¿¼ï¤Î¥¢¥Õ¥£¥óÂоζõ´Ö¤Î¥³¥ó¥Ñ¥¯¥È²½¤È¤½¤Î±þÍÑ
    ´Ø¸ý¼¡Ïº    Âоζõ´Ö¤Î´ðËÜ·²¤Ë¤Ä¤¤¤Æ¤ÎÃí°Õ
    ¾¾ÌÚÉÒɧ    Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits
    ²£ÅÄ°ìϺ    Îã³°¥ê¡¼·²¤Î¼Â¸½¤Ë¤Ä¤¤¤Æ
    ±×ËÜ  ÍÎ    p¿ÊÂξå¤Î GSp(2) ¤Î´ûÌó super cuspidal ɽ¸½¤Ë¤Ä¤¤¤Æ
    ¾®ÃÓÏÂɧ¡¦»ûÅÄ  »ê  SO,Sp ¤ÎÍ­¸Â¼¡¸µÉ½¸½¤Ë¤Ä¤¤¤Æ
    Ìî¼δ¾¼    Representations of a solvable Lie group on ¢ßb cohomology spaces
    ëºê½ÓÇ·    Characteristic varieties of highest weight modules and primitive quotients 
    ËÙÅÄÎÉÇ·    Primitive ideals and the Harish-Chandra equation
    Çð¸¶Àµ¼ù
    ÂçÅçÍøͺ    ¥æ¥Ë¥¿¥ê²½²Äǽ¤Ê Harish-Chandra ²Ã·²¤ÎÍ­³¦À­¤Ë¤Ä¤¤¤Æ
    »³²¼  Çî    Multiplicity free property for generalized Gelfand-Graev representations of semisimple Lie groups
    ¾¾Ëܵ׵Á    Ⱦñ½ã Lie ·²¾å¤Î Whittaker Ķ´Ø¿ô
    »°Ä»Àî¼÷°ì  ¼ç·ÏÎóɽ¸½¤Î¹ÔÎóÍ×ÁǤËÂФ¹¤ë Constant term ¤Ë¤Ä¤¤¤Æ

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖµåĶȡ¿ô¤Ê¤é¤Ó¤Ë¤½¤ì¤Ë¤è¤ë¦ÄĶȡ¿ô¤ÎŸ³«¡×1985Sept10-12 (Ê¿°æ  ÉðÂåɽ)
    ÀÄÌÚ  ÌС¦²ÃÆ£Ëö¹­  U(4,2)/(U(2)¡ßU(2,2)) ¾å¤ÎÉÔÊѸÇͭĶ´Ø¿ô¤ÎÀܳ¸ø¼°¤Ë¤Ä¤¤¤Æ
    ²Ï¾å  ů¡¦³á¸¶  µ£  ɽ¸½ÏÀ¤ÈKÍýÏÀ
    ÌÚȨÆƹ§    Invariant eigendistribution on the tangent space of semisimple symmetric spaces
    º´Ìî  ÌС¦N.Bopp  Distributions spheriques invariantes sur l'espace semi-simple Gc/GR
        Ìî¼δ¾¼    Plancherel theorem for solvable Lie groups acting simply transitively on Siegel domains
    Æ£¸¶±ÑÆÁ    Exponential group ¤Î  orbit method ¤Ë¤Ä¤¤¤Æ
    ¾¾ËÜÌмù    On the unitarizability of irreducible representation of GL(n,k)
    »°¾å½Ó²ð    SU(p,q) ¤Î»ØɸÅù¼°¤Ë¤Ä¤¤¤Æ
    »³¸ý  ÆØ    On higher-order terms in asymptotic expansions for irreducible characters of semisimple Lie groups
    »³²¼  Çî    Highest weight vectors for generalized Gelfand-Graev representations of semisimple Lie groups

ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñÆÃÊÌ¹Ö±é  ÉÙ»³Âç³Ø
    ëºê½ÓÇ·    Ⱦñ½ãLie·²¤Îɽ¸½¤È´ú¿ÍÍÂξå¤ÎÈùʬÊýÄø¼°·Ï

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1985.Nov.6-9)ÅòÍèÄ®¤ß¤Î¤Á³ØÁñ    À¤ÏÿͶ¶ÄÞƻɧ
    Æ£¸¶±ÑÆÁ    Exponential group ¤Î monomial ɽ¸½
    ÈøȪ¿­ÌÀ    ̵¸ÂÂоη²¤Î¥æ¥Ë¥¿¥êɽ¸½
    ¾¾ËÜÌмù    GL2(F)¤Î´ûÌóɽ¸½¤Î unitarizability ¤Ë¤Ä¤¤¤Æ
    ´¢»³ÏÂ½Ó    ľ¸ò·²¤Î¶ËÂç¥È¡¼¥é¥¹¤Î¶¦ÌòÎà¤ÎʬÎà
    ¿ÜÆ£À¶°ì    Kac-Moody Lie´Ä¤ËÂФ¹¤ë Kazhdan-Lusztig ͽÁۤˤĤ¤¤Æ
    ÅÚ°æ±Ñͺ    ¥â¥¸¥å¥é¥¤¤Î´ö²¿
    À¾»³  µý    Hecke ´Ä¤Î»Øɸ²Ã·²¾å¤Îɽ¸½
    ¸ÅÄÅÇî½Ó    Lie superalgebra ¤Î¥æ¥Ë¥¿¥êɽ¸½
    »³ÅÄ͵»Ë    ¥½¥ê¥È¥óÊýÄø¼°¤Î¥¹¡¼¥Ñ¡¼²½¤Ø¤Î»î¤ß

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÈóI·¿·²¤Î¥æ¥Ë¥¿¥ê¡¼É½¸½¡×1985.Dec.9-13(³á¸¶µ£Âåɽ)
    ³á¸¶  µ£    ÈóI·¿·²¤Îɽ¸½ÏÀ
    Æ£¸¶±ÑÆÁ    ²Ä²ò¥ê¡¼·²¤Îñ¹àɽ¸½¤Ë¤Ä¤¤¤Æ
    »³¾å  ¼¢    ²Ä²ò¥ê¡¼·²¤Îcharacter¤Èorbit method
    Ìî¼δ¾¼    On symmetry of L1(G) for solvable Lie groups
    ÈøȪ¿­ÌÀ    Configuration space and unitary representations of the group of diffeomorphisms
    ²Ï¾å  ů    ɽ¸½ÏÀµÚ¤ÓºîÍÑÁÇÏÀ¤Ë¤ª¤±¤ëÄ㼡¥³¥Û¥â¥í¥¸¡¼ÏÀ³µÀâ
    ÊÒ»³ÎÉ°ì    II1·¿¤Î hyperfinite °ø»Ò´Ä¾å¤Î²Ä»»¤Ê²Ä´¹Î¥»¶·²¤ÎºîÍѤ˴ؤ¹¤ëÁÐÂÐÄêÍý
    ÂçÆâËÜÉ×    ·²¤ÎºîÍѤΠPoisson ¶­³¦¤Ë¤Ä¤¤¤Æ
    ³á¸¶  µ£    Dirac induction of semisimple Lie groups
    À¾»³  µý    Ⱦñ½ã·²¤Î Discrete series ¤Ë¤Ä¤¤¤Æ

1986(¾¼61)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à  µþÂçÍý³ØÉô    1986 Jan 16-18
    ´Ø¸ý¼¡Ïº    D-module ¤Èɽ¸½ÏÀ
    ÂçÅçÍøͺ    Semisimple symmetric space ¤Î Plancherel ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ
    ÀÄËÜÏÂɧ    Selberg ÀÑʬ¤Ë¤Ä¤¤¤Æ
    »°¾å½Ó²ð    Ⱦñ½ã¥ê¡¼·²¤ÎÉÔÊѸÇͭĶȡ¿ô¤Ë´Ø¤¹¤ë Shelsted ¤ÎÍýÏÀ
    À¾»³  µý    Ê£Áǥ꡼·²¤Î»Øɸ²Ã·²¤Ë¤Ä¤¤¤Æ
    ÌÚȨÆƹ§    Ⱦñ½ãÂоζõ´Ö¾å¤ÎÉÔÊÑÈùʬÊýÄø¼°
    ÀÄÌÚ  ÌÐ
    ëºê½ÓÇ·    Affine Weyl ·²¤Îɽ¸½¤È D-module
    ¾¾Ëܵ׵Á    Whittaker model
    »³²¼  Çî    Ⱦñ½ã¥ê¡¼·²¤ÎͶƳɽ¸½¤Ë´Ø¤¹¤ë½ÅÊ£ÅÙÄêÍý¤È¤½¤Î±þÍÑ

ÆüËÜ¿ô³Ø²ñǯ²ñÆÃÊÌ¹Ö±é  µþÅÔÂç³Ø
    Æ£¸¶±ÑÆÁ    ²Ä²ò·²¤Î¥æ¥Ë¥¿¥êɽ¸½ÏÀ(´ö²¿³Ø)

Âè25²ó¼Â´Ø¿ôÏÀÂè24²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1986.July22-24)  ÌÄÌ綵°éÂç³Ø(¾¶)
    Ìî¼δ¾¼    Åù¼Á Siegel Îΰè¾å¤Î²òÀÏ³Ø¤È Lie ·²¤Îɽ¸½

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖAnalysis on Homogeneous Spaces and Representations of Lie Groups ( ÂçÅçÍøͺÂåɽ)
    M.Duflo  Plancherel theorem and orbit method
    M.F.Vergne  Index theorem and equivariant cohomology 
    W.Schmid   Comparison of various constructions of representations of representations of semisimple Lie groups
    Æ£¸¶±ÑÆÁ¡¦»³¾å  ¼¢  Some monomial representations of exponential groups
    M.Flensted-Jensen  Towards a Paley-Wiener theorem for semisimple symmetric spaces
    N.R.Wallach  On the condition of moderate growth
    J.N.Bernstein  On the support of Plancherel measure
    °Ëã±Ùϯ¡¦¿ÀÊÝÆ»Éס¦»°ÎØůÆó¡¦Èø³ÑÀµ¿Í  Solvable lattice models
    ÅÚ²°¾¼Çî    2 dimensional conformal field theory and representation of braid group
    D.A.Vogan  The orbit methods and unitary representations
    P.J.Sally

¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö¥ê¡¼·²¤Îɽ¸½¤ÈÅù¼Á¶õ´Ö¾å¤Î´Ø¿ô¡×1986.Sept.3-4  (·§¸¶·¼ºîÂåɽ)
    ÌÚ¼ãͺ    A classification problem of prehomogeneous vector spaces
    ¿ÜÆ£À¶°ì    Groups associated with unitary forms of Kac-Moody algebras
    »³²¼  Çî    Finite multiplicity theorems for induced representations of semisimple Lie groups and their applications to generalized Gelfand-Graev representations
    ¼ã»³Àµ¿Í    A Paley-Wiener type theorem on symmetric spaces and its applications
    ¶¶ÄÞƻɧ    Certain irreducible representations of a group of maps with values in a free group
    »°Ä»Àî¼÷°ì  On formal degree of principal series representation

Analysis on Homogeneous Spaces and Representations of Lie groups(1986.Sept.5-6)   ¹­ÅçÂç³ØÍý³ØÉô
    M.Duflo     Harish-Chandra descent method and character formulae
    M.Flensted-Jensen  H-spherical (g,K)-modules
    K.Okamoto   On thegeneralized Geroch conjectur
    T.Hirai     Construction of irreducible unitary representations of infinite symmetric groups
    M.Vergne    Equivalent cohomology and characteristic classes
    N.Wallach   Toda lattices

ÆüËÜ¿ô³Ø²ñ  1986 Sept. ÀéÍÕÂç³Ø
  Áí¹ç¹Ö±é
    M.Flensted-Jensen  Trends in the development of analysis on symmetric spaces
  ÆÃÊֱ̹é
    ¾¾ÌÚÉÒɧ    Ⱦñ½ãÂоζõ´Ö¾å¤Îµ°Æ»¹½Â¤¤ÈĴϲòÀÏ(È¡¿ô²òÀϳØ)

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖD-²Ã·²³µÀâ¡×(1986 Oct 27-29)        Çð¸¶Àµ¼ùÂåɽ
    Â绳ÍÛ²ð¡¦À¶¿åͦÆó  D-²Ã·²ÆþÌç
    ëºê½ÓÇ·    D-²Ã·²¤È·²¤Îɽ¸½ÏÀ
    ºØÆ£À¹É§    D-²Ã·²¤È Hodge ÍýÏÀ
    º´Æ£´´É×    D-²Ã·²¤ÈÈùʬÊýÄø¼°


ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1986.Nov.20-22) ¸­Å縦½¤¥»¥ó¥¿¡¼  À¤ÏÿÍÌî¼δ¾¼

    ¾®ÎÓ½Ó¹Ô    Îΰè¤È¤½¤ÎÄêµÁ´Ø¿ô¤Î Fourier-Laplace ÊÑ´¹¤ÎÎíÅÀ½¸¹ç¤Ë¤Ä¤¤¤Æ
    ´¢»³ÏÂ½Ó    ¼Â Cartan Éôʬ´Ä¤Î¶¦ÌòÎà¤ÎʬÎà¤Ë´Ø¤¹¤ë°ìÃí°Õ
    ÅÄÃæ¾ÍÊ¿    ÂоΥ꡼¥Þ¥ó¶õ´Ö¾å¤Î Hausdorff-Young ÄêÍý
    ³á¸¶  µ£    Î¥»¶¤Ù¤­Îí·²¤Îɽ¸½¤Ë¤Ä¤¤¤Æ
    ¼¼  À¯Ï    ³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¾å¤ÎÉÔÊÑĶȡ¿ô
    ÇßÅÄ  µü    ÆüìÈ¡¿ô¤Ë¤Ä¤¤¤Æ¤ÎÆüì¤Ê»ëÅÀ¡½q-analogue ¤ò¼´¤È¤·¤Æ¡½
    ¹â°æÇî»Ê    ÎôÅù¼Á¶õ´Ö¾å¤Î Baum-Connes ͽÁÛ
    ¸ÅÄÅÇî½Ó    Irreducible unitary representations Lie superalgebras of type A
    ²Ïź  ·ò    Fourier transform associated with holomorphic discrete series and a characterization of the discrete part of Lp-functions

1987(¾¼62)
ÆüËÜ¿ô³Ø²ñ  1987 April ÅìµþÂç³Ø
  ÆÃÊÌ¹Ö±é    
    À¾»³  µý  Ⱦñ½ã Lie ·²¤Î»Øɸ²Ã·²¤È Weyl ·²¤ª¤è¤Ó¤½¤Î Hecke ´Ä¤Îɽ¸½(È¡¿ô²òÀϳØ)

Âè26²ó¼Â´Ø¿ôÏÀÂè25²ó´Ø¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1987.July20-22)  Ë̳¤Æ»Âç³Ø    (¾¶)
    º´Ìî  ÌÐ    Ⱦñ½ãÂоζõ´Ö¾å¤ÎÎ¥»¶¥¹¥Ú¥¯¥È¥ë¤ò»ý¤ÄÉÔÊÑÂÓµåĶ´Ø¿ô

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂоζõ´Ö¾å¤Î¸ÇÍ­È¡¿ô¤È¥ê¡¼·²¤Îɽ¸½¡×1987.July27-30   (Êö¼¾¡¹°Âåɽ)
    º£ÌîÂÙ»Ò    Sp(p,q)¤ÎÉÔϢ³Éôʬ·²¤Î cohomology ¤Ë¤Ä¤¤¤Æ
     Parthasarathy  Unitary highest weight modules
    ËÙÅÄÎÉÇ·    Character D-modules on a reductive group
    ¿ÜÆ£À¶°ì    Differentiable vectors and analytic vectors in completions of certain representation spaces of a Kac-Moody algebra
    ³ª¹¾¹¬Çî    Conformal field theory ¤È A·¿ Hecke´Ä¤Îɽ¸½
    ÅÚ°æ±ÑÉ×    CPn¾å¤Î¼ç«¥È¡¼¥é¥¹´Ô¸µ
    ¾¾Ëܵ׵Á    Whittaker vectors ¤Ë¤Ä¤¤¤Æ
    ¾¾ÌÚÉÒɧ¡¦ÂçÅçÍøͺ
    ¾®ÎÓ½Ó¹Ô    Âоζõ´Ö¤Î¥Ù¥¯¥È¥ë«¤Ë¼Â¸½¤µ¤ì¤ë¥æ¥Ë¥¿¥êɽ¸½¤Ë¤Ä¤¤¤Æ
    ´Ø¸ý¼¡Ïº    ¿¹à¼°¤ÎÊ£ÁÇ¥Ù¥­¤ÎÀµÂ§²½¤ÈñϢ·ëȾñ½ãÂоζõ´Ö¤Î¼ç·ÏÎó¤Ë¤Ä¤¤¤Æ
    ¹¾¸ýÀµ¹¸¡¦ÅÄÃæ¾ÍÊ¿¡¦¾®Àô  ¿­  SL(3,R)¤Î°ìÍÍÍ­³¦É½¸½¤Ë¤Ä¤¤¤Æ
    ÃÝÃæÌÐÉ×    Pathwise Projective Invariance of Brownian Motion (& Unitary Representations of SL(2,R))
    ÈøȪ¿­ÌÀ    Hilbert space ¾å¤ÎÄ´Ï´ؿô ¤È Levy Laplacian
    ÂçÅçÍøͺ¡¦º´Ê¬ÍøË­¡¦¼ã»³Àµ¿Í  Âоζõ´Ö¾å¤Î Ehrenpreis ¤Î´ðËܸ¶Íý
    º´Ìî  ÌÐ    Âоζõ´Ö¾å¤Î¹çÀ®ÀѤÎÄêµÁ¤È°ìÄêÍý 

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1987.Nov.12-14) ·Ú°æÂô ÆüËÜÂç³Ø¸¦½¤½ê   À¤ÏÃ¿Í  »Þ¾¾ ¹§
    ¿ÜÆ£À¶°ì    Exponentiability of certain completion of the unitary'orm of a Kac-Moody algebra
    ĹëÀî¹À»Ê  Affine Lie ´Ä¤Î Spinor ɽ¸½¤Ë¤Ä¤¤¤Æ
    ÃæΤ  Çî    ¥é¥×¥é¥·¥¢¥ó¤Î¶Ò¤¬À¸À®¤¹¤ë1·Â¿ôȾ·²
    »³²¼  Çî    Ⱦñ½ã¥ê¡¼·²¤ÎÎ¥»¶·ÏÎóɽ¸½¤ÎͶƳɽ¸½¤Ø¤ÎËä¤á¹þ¤ß
    »°¾å½Ó²ð    ¸Åŵ·²¤Î´ËÁý²Ã¤Ê»Øɸ¤ÎÅù¼°¤Ë¤Ä¤¤¤Æ
    ëºê½ÓÇ·    Hecke algebras and D-modules 
    °Ëã±Ùϯ¡¦¿ÀÊÝÆ»Éס¦»°ÎØůÆó¡¦Èø³ÑÀµ¿Í  Two remarks on recent development in solvable models
    ´Ø¸ý¼¡Ïº    Invariant systems of differential equations on Siegel's upper half-plane      

 1988(¾¼63)
ÆüËÜ¿ô³Ø²ñ 1988 April  Ω¶µÂç³Ø
  ÆÃÊֱ̹é
    »³²¼  Çî    Ⱦñ½ã¥ê¡¼·²¤Î°ìÈ̲½¤µ¤ì¤¿ Gelfand-Graev ɽ¸½¡½Í­¸Â½ÅÊ£ÅÙÄêÍý¤È´ûÌóɽ¸½¤Î Whittaker model¡½  (È¡¿ô²òÀϳØ)
    ëºê½ÓÇ·    Ⱦñ½ã·²¤Îɽ¸½¤ÈD²Ã·²(Âå¿ô³Ø)

¿ôÍý¸¦¸¦µæ½¸²ñ¡Öɽ¸½ÏÀ¤È¤½¤ÎʪÍýŪ±þÍÑ¡×1988.July18-21  (³ª¹¾¹¬ÇîÂåɽ)
    ¿ÜÆ£À¶°ì    Loop ·²¤Î affine Lie ´Ä¤Ø¤ÎºîÍѤ˴ؤ·¤Æ
    ÂÀÅÄÂöÌé    ¸Åŵ·¿ Lie ´Ä¤Î admissible ¤Ê¶ÒÎíµ°Æ»¤ÎʬÎà
    ÏÆËÜ  ¼Â    A topic from the representation theory of infinite-dimensional Lie algebras
    »°Ä®¾¡µ×    Representation theory of quantum groups
    ¶¶ÄÞƻɧ    ÆóÉô¼ùÌÚ¾å¤Î Selberg À׸ø¼°¤Ë¤Ä¤¤¤Æ
    °Ëã±Ùϯ¡¦¿ÀÊÝÆ»Éס¦¹ñ¾ìÆØÉס¦»°ÎØůÆó¡¦Èø³ÑÀµ¿Í  ²Ä²ò³Ê»ÒÌÏ·¿¤È Weyl-Kac »Øɸ¸ø¼°
    ¼¾å  ½ç    ²Ä²ò³Ê»ÒÌÏ·¿¤Èɽ¸½ÏÀ
    ³ª¹¾¹¬Çî    P1¾å¤Î CFT ¤È braid ·²¤Î¥â¥Î¥É¥í¥ß¡¼É½¸½
    ¾®Ìî  ·°¡¦¾®ÎÓ½Ó¹Ô  Note on Hiruzebruch's proportionality principle
    ¾¾ÌÚÉÒɧ¡¦ÂçÅçÍøͺ  Î¥»¶·ÏÎóɽ¸½¤Î¼ç·ÏÎóɽ¸½¤Ø¤ÎËä¤á¹þ¤ß
    Çð¸¶Àµ¼ù    D-modules on flag varieties for degenerate infinitesimal characters
    ´Ø¸ý¼¡Ïº    Ⱦñ½ã·²¤Î²Ä´¹¤ÊÂйçƱ·¿¤ÈÂоζõ´Ö¤ÎÉôʬ¶õ´Ö
    Ìî¼δ¾¼    Use of Jordan structure in harmonic analysis
    º´Ìî  ÌÐ    Âоζõ´Ö¾å¤ÎÂÓµåĶ´Ø¿ô¤Èµ°Æ»ÊýË¡
    ²¬ËÜÀ¶¶¿    Kac-Moody Lie ·²¤ÎÄê¾ï¼´ÂоΠEinstein-Maxwell ÊýÄø¼°¤Î²ò¤Ø¤ÎºîÍÑ

Âè27²ó¼ÂÈ¡¿ôÏÀ¡¦Âè26²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1988.July21-23)=@²¬»³Âç³Ø      (¾¶)
    »³ÅÄ͵»Ë    ĶÂоÎÈùʬÊýÄø¼°¤ÎÂå¿ôŪ¹½Â¤

ÆüËÜ¿ô³Ø²ñ  1988 Oct. ¶âÂôÂç³Ø
  ÆÃÊֱ̹é
    ÌÀµ½Ó    Î̻ҷ²¤Îɽ¸½¤ÈµåÈ¡¿ô¤Î q-analogue      (È¡¿ô²òÀϳØ)

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1989.Nov.19-22) ²Ï¸ý¸ÐÉٻκùÁñ    À¤Ïÿͻ³ÅÄ͵»Ë
    ÂçÅçÍøͺ    Asymptotic behavior of Flensted-Jensen's spherical trace functions with respect to spectral parameters  
    ¾®ÎÓ½Ó¹Ô    ´ÊÌó·¿Åù¼Á¶õ´Ö¤Ø¤Î¸ÇÍ­ÉÔϢ³¤ÊºîÍÑ
    ²Ïź  ·ò    On a global realization of a discrete series for SU(n,1) as applications of Szego operator and limits of discrete series
    Èø³ÑÀµ¿Í    Path representations of sl^(r,C)Ʊ»þ¸ÇÍ­È¡¿ô
    Íî¹ç·¼Ç·    Rank1¤ÎÂоζõ´Ö¤ÎÉÔÊÑĶȡ¿ô
    ¼¨Ìî¿®°ì    Riemann Âоζõ´Ö ¤Î line bundle ¾å¤ÎÉÔÊÑÈùʬºîÍÑÁǤÎ
    ¿û  ½¤°ì    Hermite ÂоÎÂФΠLie ´Ä¤Î´ûÌóºÇ¹â¥¦¥§¥¤¥Èɽ¸½¤Î¹½À®¤Ë¤Ä¤¤¤Æ
    Æ£¸¶±ÑÆÁ    On monomial representations of exponential solvable Lie groups
    À¾»³  µý    Oscillator representations and a super dual pair
    ÅÄÃæ¾ÍÊ¿    C-´Ø¿ô¤Î determinant ¤Ë¤Ä¤¤¤Æ¡½¡½SL(n,R) case¡½¡½
    ²¬ËÜÀ¶¶¿¡¦ÃÓÅÄ  ¾Ï¡¦¶¶ËÜδ»Ê¡¦²ÏÌîÂÙ¼£  Affine Kac-Moody Lie ·²¤ËÂФ¹¤ë Borel-Weil ÄêÍý
    º´Ìî  ÌÐ    Âоζõ´Ö¤Î Eisenstein ÀÑʬ
    ¾¾Âô½ß°ì    Hirzebruch ¶ÊÌÌ¤Î¥Ö¥í¡¼¥¢¥Ã¥×¤È C ·¿ Weyl ·²

¸¦µæ½¸²ñ¡ÖLie ·²¤Ë¤Ä¤¤¤Æ¡× 1988 Dec.15-16  ²¬»³Íý²ÊÂç³Ø
    ĹÌî  Àµ    Âоζõ´Ö¤Î¹½Â¤ÏÀ
    ¶â¹ÔÁÔÆó    Jordan Âå¿ô¤Ë¤ª¤±¤ë¥·¥ë¥Ù¥¹¥¿¡¼¤Î´·À­Î§¤È¤½¤Î±þÍÑ
    ¸ü»³·ò¼¡    Polarity ¤ò¤â¤ÄÂоζõ´Ö²¤Ë¤Ä¤¤¤Æ
    Ìî¼δ¾¼    Algebraically independent generators of invariant differential operators on a symmetric cone
    ¾®ÎÓ½Ó¹Ô    Proper action on a homogeneous space of reductive type
    ¸åÆ£¼éË®    Standard Cartan subalgebra ¤Ë¤Ä¤¤¤Æ

1989(¾¼64¡¦Ê¿À®¸µ)
¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡Öɽ¸½ÏÀ¤Ë¤ª¤±¤ë¶¦Ìò¿ïȼµ°Æ»¤Î¸¦µæ¡×(1989 Feb 22-25)    ³á¸¶  µ£Âåɽ
    ²Ï¾å  ů    ¥Õ¥©¥ó¥Î¥¤¥Þ¥óÉôʬ´Ä¤Î»Ø¿ô¤Ë´Ø¤¹¤ë´Ô¸µÏÀ
    ÈøȪ¿­ÌÀ    ̵¸ÂÎ¥»¶·²¤ÎͶƳɽ¸½  Intertwining Number Theorem ¤È¤½¤Î±þÍÑ
    ÊÒ»³ÎÉ°ì    Duality for an action of a countable amenable group on an injective factor
    ÂçÆâËÜÉ×    ¥Û¥í¥Î¥ß¡¼°¡·²¤Î´ÊÌó¤ËÉտ路¤¿C*´Ä¤Ë¤Ä¤¤¤Æ
    Æ£¸¶±ÑÆÁ    Reciprocite de Frobenius pour des groupes de Lie resolubles exponentiels
    ³á¸¶  µ£    Induced traces on coaction crossed product C*-algebras

ÆüËÜ¿ô³Ø²ñǯ²ñ  ÆüËÜÂç³Ø
  Áí¹ç¹Ö±é
    M.Gelfand  Hypergeometric functions and combinatorics
  ÆÃÊֱ̹é
    ²Ï¾å  ů    Í­¸Â·¿¥Õ¥©¥ó¥Î¥¤¥Þ¥ó´Ä¤ÎÉôʬ´Ä¤Î¹½Â¤¤ª¤è¤Ó·²ºîÍѤˤĤ¤¤Æ
    º´Æ£Ê¸¹­    ¥¢¥¤¥¼¥ó¥·¥å¥¿¥¤¥óµé¿ô¤Î°ìÈ̲½¤ÈÍ­Íý¿ôÂξå¤Î¡Öµå¥Õ¡¼¥ê¥¨ÊÑ´¹¡×   (Âå¿ô³Ø)
    ¾åÌî´î»°Íº  Èó¥³¥ó¥Ñ¥¯¥ÈÎ̻ҷ² SUq(1,1) ¤Î¥æ¥Ë¥¿¥ê¡¼É½¸½¤Ë¤Ä¤¤¤Æ             (Âå¿ô³Ø)

Âè28²ó¼ÂÈ¡¿ôÏÀ¡¦Âè27²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1989.July20-22)   ¹°Á°Âç³Ø    (¾¶)
    ¾®ÎÓ½Ó¹Ô    Ⱦñ½ãÂоζõ´Ö¾å¤Î¥Ù¥¯¥È¥ë«ÃÍ´Ø¿ô¤Ë¼Â¸½¤µ¤ì¤ë¥æ¥Ë¥¿¥êɽ¸½

¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½¤ÈÆüì´Ø¿ô¡×(1989 July 3-6)    ¶¶ÄÞƻɧÂåɽ
    Æ£¸¶±ÑÆÁ    Restrictions of unitary representations for exponential groups
    °æ¾å½ç»Ò    Fourier transforms for affine automorphism groups on Siegel domain
    Ìî¼δ¾¼    Algebraically independent generators of invariant differential operators on a symmetric cone
    À¾»³  µý    OSP(2n,2m,R) ¤Î discrete series ¤Ë¤Ä¤¤¤Æ
    µÈÅÄÀµ¾Ï    ÀÄËÜ-Gelfand ¤ÎĶ´ö²¿´Ø¿ô¤È K3-¶ÊÌ̤β¤Ë¤Ä¤¤¤Æ
    ÀîÃæÀëÌÀ    Í­¸ÂÂξå¤Î reductive ¤ÊÂоζõ´Ö¤Ë¤ª¤±¤ëµå´Ø¿ôÏÀ
    µÈÅÄ·ÉÇ·    On the unitarizability of principal series representations of p-adic Chevalley groups
    H.Rubenthaler  Some zeta functions related to certain complex symmetric spaces
    ÂçÅçÍøͺ    Ⱦñ½ãÂоζõ´Ö¤Î Plancherel ¬Å٤ˤĤ¤¤Æ
    ÌÚȨÆƹ§    Âоζõ´Ö¾å¤ÎĶµåÈ¡¿ô¤Ë¤Ä¤¤¤Æ
    Íî¹ç·¼Ç·    ÉÔÊÑĶ´Ø¿ô¤Î¤ß¤¿¤¹ÈùʬÊýÄø¼°·Ï¤Ë¤Ä¤¤¤Æ
    »³ÅÄ͵»Ë    Î̻ҷ²¤Î SUq(n) ¤Îɽ¸½
    »Ö¼¹°Ç·    Irreducible decompositions of the regular representation of a restricted direct product group

¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡ÖÎ̻ҷ²¤È Robinson-Schenste Âбþ¡×    
    Í­ÌÚ  ¿Ê    Robinson-Schensted Âбþ¤È left cell
    ²¬ÅÄæâ°ì    Wreath ÀѤΠRobinson-Schensted Âбþ
    °Ëã±Ùϯ¡¦¿ÀÊÝÆ»Éס¦»°ÎØůÆó  Î̻ҷ² Uq(gl(n,C)) ¤Î q¢ª0 ¤Ç¤Îɽ¸½¤È Robinson-Schensted Âбþ
    »ûÅÄ  »ê    Robinson-Schensted Âбþ¤È¤½¤Î°ì²
    ¾¾ß·½ß°ì    Flag manifold ¤È Robinson-Schensted Âбþ

ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñ  ¾åÃÒÂç³Ø
  Áí¹ç¹Ö±é
    ÅÚ²°¾¼Çî    2¼¡¸µ¶¦·ÁŪ¾ì¤ÎÍýÏÀ¤Ë¤Ä¤¤¤Æ
  ÆÃÊֱ̹é
    Çð¸¶Àµ¼ù    Kac-Moody Lie´Ä¤Ë´Ø¤¹¤ë Kazhdan-Lusztig ͽÁÛ(Âå¿ô³Ø)   W.A.Casselman   Recent results in geometry, arithmetic, and analysis for Satake compactifications   (Âå¿ô³Ø)
   ¾®ÎÓ½Ó¹Ô    Åù¼Á¥Ù¥¯¥È¥ë«¾å¤ÎĴϲòÀϤÈȾñ½ã¥ê¡¼·²¤Î¥æ¥Ë¥¿¥ê¡¼É½¸½    (È¡¿ô²òÀϳØ)
   J.Faraut                                            (È¡¿ô²òÀϳØ)
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1989.Nov.19-22) ¶á¹¾È¬È¨»Ô ¶á¹¾È¬È¨¹ṉ̃µÙ²Ë¼     À¤ÏÃ¿Í ¼¼ À¯ÏÂ
    ºØÆ£  ËÓ    Localization of D-modules
    »³º¬¹¨Ç·    A,B,C,D ·¿¤Î Uq(g) ¤Î PBW-Th ¤Ë¤Ä¤¤¤Æ
    ¹ñ¾ìÆØÉ×    Quantum R-matrix for G2 and a Solvable lattice model in Statistical Mechanics
    Èø³ÑÀµ¿Í    ¥¹¥Ô¥óɽ¸½¤ËÂбþ¤¹¤ë R-matrix ¤Ë¤Ä¤¤¤Æ

    ¶¶Ëܸ÷Ì÷¡¦ÎÓ¹§¹¨  Yang-Baxter ÊýÄø¼°¤ÈÎ̻ҰìÈÌÀþ·¿·²¤Îɽ¸½ÏÀ
    ÌÀµ½Ó¡¦»°Ä®¾¡µ×  Î̻ҷ² GLq(n+1) ¤Î´ûÌóɽ¸½¤Î¹½À®¤ÈÎÌ»ÒÅù¼Á¶õ´Ö  SUq(n+1)/SUq(n)
    ¾®ÃÓÏÂɧ    Ar,A~r ·¿¤Î quiver ¾å¤ÎÉÔÊѼ°´Ä¤Ë¤Ä¤¤¤Æ
    W.A.Casselman  From asymptotic behavior to Plancherel measure
    ÂÀÅÄÂöÌé    ¸Åŵ·¿ÂоÎÂФζÒÎíµ°Æ»¤ÎÊÄÊñ¤Ë¤Ä¤¤¤Æ
    ²Ïź  ·ò    Szego Operators and a Paley-Wiener Theorem
    º´Ìî  ÌÐ    Âоζõ´Ö¾å¤Î Eisenstein ÀÑʬ¤È¤½¤Î±þÍÑ¡½Âоζõ´Ö Gc/G ¾å¤Î Plancherel ¸ø¼°¡½
    ÏÂÅÄÎÃ»Ò    p ¾å¤ÎÀµÂ§È¡¿ô¤Ë¤Ä¤¤¤Æ
              

1990(Ê¿À®2)

Âè2²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥× 1990 Jan.8-10  Ä»¼èÂç³Ø
    ¶¶ÄÞƻɧ    ¼ùÌÚ¾å¤ÎĴϲòÀÏ
    ¾¾ÌÚÉÒɧ    Ⱦñ½ãÂоζõ´Ö¤Ë¤ª¤±¤ëµ°Æ»¤Îµ­¹æɽ¼¨
    À¾»³  µý
    ÅÄÃæ¾ÍÊ¿    Ⱦñ½ãÂоζõ´Ö¤Î¼ç·ÏÎó¤Î intertwining operator ¤Ë¤Ä¤¤¤Æ
    ¶¶ËÜδ»Ê    Wess-Zumino ¥â¥Ç¥ëÆþÌç
    Íî¹ç·¼Ç·    Rank 1 ¤ÎÂоζõ´Ö¤ÎµåÈ¡¿ô¤¬Ëþ¤¿¤¹ÈùʬÊýÄø¼°
    Ìî¼δ¾¼    Non-inductive linear forms
    ¾¾ËÜÌмù    Zelvinskii ¤Î duality ¤Î explicit formula ¤Ë¤Ä¤¤¤Æ
    ¾®ÎÓ½Ó¹Ô    Åù¼Á¶õ´Ö¤ËÉտ路¤¿Ìµ¸Â¼¡¸µÉ½¸½¤Îʬ´ô§¤ÎÎã
    Ãæî·ÇîÇ·    ´ú¿ÍÍÂΤËÍ­¸Âµ°Æ»¤ò»ý¤Ä´ÊÌóÉôʬ·²
    ·§¸¶·¼ºî¡¦¼ã»³Àµ¿Í  q ¤Ë±÷¤±¤ë Radon ÊÑ´¹

ÆüËÜ¿ô³Ø²ñ  1990 April ²¬»³Íý²ÊÂç³Ø
  ÆÃÊֱ̹é
    ÀÄËÜÏÂɧ    JacksonÀÑʬ¤È¤½¤ì¤Ë´ØÏ¢¤¹¤ë2,3¤ÎÏÃÂê¤Ë¤Ä¤¤¤Æ(È¡¿ô²òÀϳØ)

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÂå¿ô·²¤È¤½¤Î¼þÊÕ¡×1990 May28-31(º´Éð°ìϺÂåɽ)
    ÂçÅçÍøͺ    Harmonic analysis on semisimple symmetric spaces
    ¾¾ÌÚÉÒɧ    Discrete series for semisimple symmetric spaces
    ¾®ÎÓ½Ó¹Ô    Properly discontinuous groups in a non-Riemannian 
                homogeneous spaces
    ´Ø¸ý¼¡Ïº    Split rank 1 semisimple symmetric spaces and c-functions
    Çð¸¶Àµ¼ù    Crystal bases of the q-analogue of universal enveloping algebras
    ëºê½ÓÇ·    Kazhdan-Lusztig conjecture for Kac-Moody Lie algebrs
    ¹Ô¼ÔÌÀɧ    On prehomogeneous vector spaces
    A.Borel     Generalized modular symbols and cohomology of arithmetic groups
    W.A.Casselman   Remarks on Satake compactifications 
    ¿¥Åŧ¹¬    Hodge structures and special values of L-functions associated with automorphic forms
    °Ë¿á»³ÃεÁ  Parahoric subgroups and automorphic forms
    ¿ûÌ»Ë    Jacobi forms and theta liftings
    ¿åËÜ¿®°ìϺ  Special values of L-functions associated with Siegel modular forms

Âè29²óÈ¡´Ø¿ôÏÀ¡¦Âè28²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1990.July18-20)     ÅìË̳ر¡Âç³Ø    (¾¶)
    ¿ÜÆ£À¶°ì    Kac-Moody Lie·²¤Ë¤Ä¤¤¤Æ

ICM 1990 Kyoto
  Invited One-Hour Adresses at the Plenary Sessions
    George Lusztig  Intersection cohomology Methods in Representation Theory
  Invited Forty-Five Minute Adresses at the Session of Lie Groups and Representations
    Dan Barbasch  Unipotent representations of real reductive groups
    Gunter Harder  Eisenstein cohomology of arithmetic groups
    Masaki Kashiwara  Crystallizing the q-analogue of universal enveloping algebras
    Olivier Mathieu  Classification of simple graded Lie algebras of finite growth
    Toshihiko Matsuki  Orbits on flag manifolds
    Colette Moeglin  Sur les formes automorphes de carre integrable
    Gopal Prasad  Semi-simple groups and arithmetic subgroups
    Stephen Rallis  Poles of standard L function

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à("Repsresentation Theory of Lie Groups and Lie Algebras") (1990.Aug.30-Sept.3) ²Ï¸ý¸ÐÉٻκùÁñ
    T.Kobayashi  Discontinuous group in a homogeneous space of reductive groups
    N.Wallach    Invariant differential operators associated with Hermitian symmetric spaces
    G.Heckmann   Multivariable hypergeometric functions
    O.Mathieu    Classification of Harish-Chandra modules for the Virasolo algebra
    D.Barbasch   Unipotent representations with Iwahori fixed vectors
    B.Orsted    Spherical distributions on symmetric spaces
    A.W.Knapp   Intertwining operators into L2(G/H)  
    E.Kaniuth    The Pompeiu problem for groups
    R.Lipsman    The Penny-Fujiwara Plancherel formula for non-nilpotent Lie groups
    H.Fujiwara  Plancherel formula for monomial representations
            of nilpotent Lie groups
    V.F.Molchanov  Harmonic analysis on semisimple symmetric spaces of rank one               
 Short communications
    K.Nishyiyama  Classicification of super unitary irreducible representation for su(p,q/n)
    K.Hasegawa   On "broken ZN-symmetric solutions of the Yang-Baxter equation
    S.Dzhumadl'daev  Virasoro type Lie algebras
    H.Ochiai     Invariant functions on the space of rank one symmetric spaces
    S.Ariki      A decomposition of the adjoint representation of Uq(sl2)
    K.Suto       Towards Kac-Moody Lie groups
    A.Bak        The K-theory of Kac-Moody Lie groups
    A.G.Helminck  Some remarks about symmetric varieties
    N.Boyom      Affine action of solvable Lie groups and conjecture of Milnor
    N.X.Hai      Exotic Fourier transform and strange dual spaces for Lie groups(nilpotent case)
    K.Okamoto    Kirillov-Kostant theory and path integrals on coadjoint orbits
    R.Penny      The Poisson kernel for the Laplace-Beltrami oprators on unbounded, homogeneous domains in Cn   
    Salamanca-Riba  On unitary representations of SO(n,m), regular integral case
    J-S.Huan     K-bifinite and Z(g)-finite functions
    N.Pressley   Quantum affine algebras
    H.Singh      Second order differental equations in Lie groups
    N.Shimeno    Eigenfunctions of invariant differential operators on  U(p,q)/U(p-1,q)
    M.Hashizume  Selberg trace formula for semiregular bipartite graphs

ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñ  ºë¶ÌÂç³Ø
Áí¹ç¹Ö±é
    N.Wallach    The survey of representation theory
    
¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÅù¼Á¶õ´Ö¾å¤ÎĴϲòÀϤȷ²¤Îɽ¸½ÏÀ¡×1990.Nov13-16      (Æ£¸¶±ÑÆÁÂåɽ)
    ÇßÅÄ  µü    Capelli ¹±Åù¼°¤È multiplicity-free actions(joint work with Roger Howe)
    ¼ã»³Àµ¿Í    The characteristic polynomial of certain square root of Laplacian
    ¶¶ËÜδ»Ê¡¦¾®Ìº°ìÆÁ¡¦²¬ËÜÀ¶¶¿¡¦ß·¹¾Î´°ì¡¦°Â±Ê¾°Ì­  Kirillov-Kostant theory and path-integrals on coadjoint orbits
    ¶¶ÄÞƻɧ    µ÷ΥȾÀµÂ§¥°¥é¥Õ¾å¤Î¥Õ¡¼¥ê¥¨²òÀÏ
    Ravshan Ashurov  The multiple Fourie Series
    ¸ÅÄÅÇî½Ó    Classification of super unitary irreducible representations for su(p,q/n)
    ÆâÆ£  Áï    Kac-Moody¥ê¡¼´Ä¤ÎÉôʬ´Ä¤Î·èÄê
    ÀÄÌÚ  ÌС¦²ÃÆ£Ëö¹­  U(p,q)/(U(r)¡ßU(p-r,q))¾å¤ÎÉÔÊѸÇͭĶ´Ø¿ô¤ÎÀܳ¸ø¼°¡½¡½infinitesimal character ¤¬ singular ¤Ê¾ì¹ç
    ÌÚȨÆƹ§    Zonal ¿¹à¼°¤Ë¤Ä¤¤¤Æ
    ¼¨Ìî¿®°ì    Âоζõ´Ö¾å¤Î line bundle ¾å¤ÎĴϲòÀÏ
    »ûÅÄ  »ê    ¡ÖN-stable flagÁ´ÂΡפΠaffine ¶õ´Öʬ³ä¤ÎÁȹ礻ÏÀ¤Ø¤Î±þÍÑ
    Í­ÌÚ  ¿Ê    Î̻ҷ²¤Î¿ïȼɽ¸½¤Îľ´ûÌóʬ²ò
    Ìî¼δ¾¼    Jordan theoretic description of algebraical independent generators of invariant differential operators 
    °æ¾å½ç»Ò    Lp-Fourier transforms for solvable Lie group acting on Siegel domain    

¸¦µæ½¸²ñ¡Ö¸½Âå¤ÎÊìÈ¡¿ô¡×(1990 Dec 25-27)Ä»¼èÂç³Ø
    ÌÀµ½Ó    ¡Ö¸½Âå¤ÎÊìÈ¡¿ô¡×¤Ë¸þ¤±¤Æ
    ¾¾ËÜÌмù    ¶É½êÂξå¤Î°ìÈÌÀþ·Á·²¤Î»Øɸ´Ä¤Ë¤ª¤±¤ë duality operation ¤Ë¤Ä¤¤¤Æ
    »°Ä®¾¡µ×    Î̻ҷ²¤Ë¸½¤ì¤ëľ¸ò¿¹à¼°¤ÎÊìÈ¡¿ôŸ³«¼°¤Î°ÕµÁ¤ò¹Í¤¨¤ë¤¿¤á¤Ë
    ÇßÅÄ  µü    ÉÔÊѼ°ÏÀ¡¦ÆþÌ硦°ÊÁ°  =Âè°ì´ðËÜÄêÍý¤Èµ­¹æŪÊýË¡=
    ¶¶ËÜ´î°ìϯ  ÊÝ·¿´Ø¿ôÏÀ(¿ôÏÀ)¤«¤é¸«¤¿Êì´Ø¿ô
    ¾¾ß·½ß°ì    Êì´Ø¿ô¤È¥È¥Ý¥í¥¸¡¼(I)
    º´ÃÝ°êÉ×    Êì´Ø¿ô¤È¥È¥Ý¥í¥¸¡¼(II)
    ¶¶ÄÞƻɧ    ÂÓµå´Ø¿ô¤ÎÊì´Ø¿ô¤ò¤á¤°¤ë2,3¤ÎÏÃÂê
    »³ÅÄ͵»Ë    ÈóÀþ·Á¸½¾Ý¤Î²òÌÀ¤ËÊì´Ø¿ô¤Ï¹×¸¥¤Ç¤­¤ë¤«
    ËÙÅÄÎÉÇ·    Gelfand ¤Î°ìÈÌĶ´ö²¿·¿ÈùʬÊýÄø¼°¤òÇÁ¤¯
    ´äºê¹î§    ÈùʬÊýÄø¼°¤ÈÊì´Ø¿ô  =  ÊÑ·ÁÍýÏÀ¤ÎÏÃÂ꤫¤é  =

1991(Ê¿À®3)
ÆüËÜ¿ô³Ø²ñ  1991 April ·ÄØæµÁ½ÎÂç³Ø
  ÆÃÊֱ̹é
    ³ª¹¾¹¬Çî    Birman-Wenzl-Murakami Âå¿ô¤Îɽ¸½¤Î¹½À®Ë¡(È¡¿ô²òÀϳØ)

Âè30²ó¼ÂÈ¡¿ôÏÀ¡¦Âè29²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1991.July17-19)    ÂçºåÉÜΩÂç³Ø(¾¶)
    ¼ã»³Àµ¿Í    Î̻ҷ²¾å¤Î¡ÈÄê¿ô·¸¿ôÈùʬºîÍÑÁÇ"

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÅù¼Á¶õ´Ö¾å¤Î·²¤Îɽ¸½¤Ë´Ø¤¹¤ëºÇ¶á¤ÎÏÃÂê¡×1991.July  23-26  (À¾»³ µýÂåɽ)
    O.Mathieu   Bicontinuity of the Dixmier map
    ²Ïź  ·ò    A relation between the logarithmic derivatives of Riemann and Selberg zeta functions and a proof of the 
                Riemann hypothesis under an assumption on a discrete subgroup of SL(2,R)
    ËÙ    Àµ    Andrianov's L-functions associated to Siegel wave forms of degree two
    ݯËÜÆÆ»Ê    Extension of Jones' projections
    ¾åÌî·ò¼¤    Infinitesimal deformation of principal bundles, determinant bundles and sffine Lie algebras
    K.C.Misra  
    ¹õÌÚ  ¸¼    Fock space representations of twisted affine Lie  algebras
    ¾¾Èø  ¸ü    ÂÓµå´Ø¿ô¤Ë´Ø·¸¤¹¤ë²ÄÀÑʬÀܳ¤Ë¤Ä¤¤¤Æ
    ÆâÆ£  Áï    Kostant's formula for a certain class of generalized  Kac-Moody algebras II
    ϲÀɧ    ̵¸Â¼¡¸µ¥°¥é¥¹¥Þ¥ó¿ÍÍÂΤòÍѤ¤¤¿¥â¥¸¥å¥é¥¹¶õ´Ö¤Î¹½À®
    B.L.Feigin  Representations of Kac-Moody algebras for critical value of central charges
    »³º¬¹¨Ç·    (Restricted)quantized enveloping algebras of simple  Lie superalgebras and universal R-matrices
    ±§Âô  ã    Real moment maps
    ¶¶ËÜδ»Ê¡¦ß·¹¾Î´°ì  A construction of solution of the Ernst equations
    Êö¼¾¡¹°    Åù¼Á¥Ù¥¯¥È¥ë«¤ÎµåÀÚÃÇ

ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñÆÃÊÌ¹Ö±é  Ë̳¤Æ»Âç³Ø
    ¶¶ÄÞƻɧ    ¥°¥é¥Õ¤Î¥¹¥Ú¥¯¥È¥ë´ö²¿¡½¡½¥»¥ë¥Ð¡¼¥°·¿À׸ø¼°¤È¤½¤Î±þÍÑ                (Âå¿ô³Ø)
    ÇßÅÄ  µü    100ǯÌܤΠCapelli identity(È¡¿ô²òÀϳØ)

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1991.Nov.23-26)»°Ä«²¹Àô²ñ´Û     À¤Ïÿͼ㻳Àµ¿Í
    ¿ù±º¸÷É×    The Origins of Infinite Dimensional Unitary Representations of Lie Groups
    Íî¹ç·¼Ç·    Character and Character Cycle
    ºØÆ£  ËÓ    Parameter Shift in Normal Generalized Hypergeometric Systems
    Ìî¼δ¾¼    Manifold of primitive idenpotents in a Jordan-Hilbert algebra
    »³¾å  ¼¢    Frobenius Reciprocity in Operator Algebra
    ´¢»³ÏÂ½Ó    Character Formula for Cuspidal Unramified Series 
                Representations of the Multiplicative Group of Division Algebra over Local Field
    ¿¥Åŧ¹¬    Cohomology of Discontinuous Subgroups of Q-rank 1 in Sp4( R ) (joint work with J.Schmermen)
    ¾®ÌÚÁ¾³ÙµÁ  ¤¢¤ë¼ï¤Î¡Èq-³µ¶Ñ¼Á¶õ´Ö"¤Î°ì¹Í»¡¤Ë¤Ä¤¤¤Æ(ÁýÅÄůÌé¤È¤Î¶¦Æ±¸¦µæ)
    ¹õÀîµ®»Ê    Âоζõ´Ö¾å¤ÎÉÔÊÑÈùʬºîÍÑÁǴĤˤĤ¤¤Æ
    »³ÅÄ͵»Ë    Hall-Littlewood ¿¹à¼°¤È¥½¥ê¥È¥óÊýÄø¼°¤Ë´Ø¤¹¤ëÃí°Õ
    »°Ä®¾¡µ×    Yang-Baxter ÊýÄø¼°¤Èq-º¹Ê¬ÊýÄø¼°

¸¦µæ½¸²ñ¡ÖÉÔÊѼ°ÏÀ¤Î¿·¤·¤¤Î®¤ì¡×1991 Dec 16-18 ÂçºåÂç³Ø À¤ÏÿÍëºê½ÓÇ·
    ÇßÅÄ  µü    ÉÔÊѼ°¤ÈÁÐÂÐÀ­
    ËÙÅÄÎÉÇ·    Equivariant D-modules --- examples
    ¼ã»³Àµ¿Í    Î̻ҷ²¾å¤ÎÄê¿ô·¸¿ôÈùʬºîÍÑÁǤÎƳÆþ¤È Capelli ¹±Åù¼°
    »°Ä®¾¡µ×    Holonomic q-difference systems and Yang-Baxter equation
    ¹õÌÚ  ¸¼    Applications of the Fock space representations of twisted affine Lie algebras
    ÄÍÅĽÕͺ    ĺÅÀºîÍÑÁÇÂå¿ô¤Ë¤Ä¤¤¤Æ
    ¹Ô¼ÔÌÀɧ    ÉÔÊѼ°ÏÀ¤Ë¤ª¤±¤ë¤¤¤¯¤Ä¤«¤ÎÏÃÂê
    ´Ø¸ý¼¡Ïº    ȽÊ̼°¤ÎÊ£ÁÇ¥Ù¥­¤ÈÂÓµå´Ø¿ô¤Î¹½À®
    ÌÀµ½Ó    ÎÌ»ÒÅù¼Á¶õ´Ö¤È Macdonald ¿¹à¼°
    ¾®¿ÜÅÄ²í    Î̻ҷ²¤Î¤¢¤ë¥Æ¥ó¥½¥ëÀÑɽ¸½¤ÎÃæ¿´²½´Ä   

1992(Ê¿À®4)
Âè3²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥×  Ä»¼èÂç³Ø
    ¾¾ÌÚÉÒɧ    H¡ÀG/P¤Îµ­¹æɽ¼¨
    ÆâÆ£  Áï    GKM algebra¤Ë¤Ä¤¤¤Æ
    °æ¾å½ç»Ò    Lp FourierÊÑ´¹¤Ë¤Ä¤¤¤Æ
    »Ö¼¹°Ç·   Èó²Ä´¹ Hibert¶õ´Ö¤ÎľÀÑʬ¤Ë¤Ä¤¤¤Æ
    ¼ã»³Àµ¿Í   q-analogue of differential operators of constant coefficients
    »°Ä»Àî¼÷°ì Harish-Chandra ¤ÎPlancherel formula¤Ë¤Ä¤¤¤Æ
    ¶¶ÄÞƻɧ¡¦»ÔÀî   Random walks on distance-regular graphs 

ÆüËÜ¿ô³Ø²ñ  1991 April  Ê¡²¬Âç³Ø
  Áí¹ç¹Ö±é
    ÀÄËÜÏÂɧ    "Ķ´ö²¿È¡¿ô¡¢¤½¤Î²áµî¡¢¸½ºß¡¢¤½¤·¤Æ¡¦¡¦¡¦"

Âè31²ó¼ÂÈ¡¿ôÏÀ¡¦Âè30²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à(1992.July12-14)  =@ÅìµþÍý²ÊÂç³Ø  (¾¶)
    À¾»³  µü    ÈùʬºîÍÑÁǤˤè¤ë¥ê¡¼´Ä¤Îɽ¸½¤Î¼Â¸½
    ÃæΤ  Çî    ¥ê¡¼Âå¿ô¤Î*-ɽ¸½¤ÎÀÑʬ²ÄǽÀ­¤Ë¤Ä¤¤¤Æ

¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½ÏÀµÚ¤ÓÅù¼Á¶õ´Ö¾å¤Î²òÀÏ¡×1992.July.21-24      (ÌÚȨÆƹ§Âåɽ)
    »³²¼  Çî    Some aspects of representations and algebraic geometry of Lie algebras
    º´Ìî  ÌÐ    Âоζõ´Ö¤Ë¤ª¤±¤ë Derived Character ¤ÈĴϲòÀϤؤαþÍÑ
    ¶¶ËÜδ»Ê    Kirillov-Kostant theory and Feynman path integrals on 
                coadjoint orbits of certain real semisimple Lie group
    ß·¹¾Î´°ì    A relation between the conformal factor in the Einstein's vacuum equations and the central extension of a formal loop group
    Ê¿°æ  Éð    ²ÄÈùʬ¼ÌÁü·²µÚ¤Ó̵¸ÂÂоη²¤Î¥æ¥Ë¥¿¥êɽ¸½¤Ë¤Ä¤¤¤Æ
    °Ëã±Ùϯ¡¦¿ÀÊÝÆ»Éס¦Èø³ÑÀµ¿Í  Crystal base and q-vertex operators
    ĹëÀî¹À»Ê  Crossing symmetry in elliptic solutions of the Yang-Baxter equation and a new L-operator for Belavin's solution
    ã·Æ£  ËÓ    Holonomicity and irregularity of inhomogeneous generalized hypergeometric systems
    º´¡¹ÌÚÉ𡦹⻳¿®µ£¡¦µÈÅÄÀµ¾Ï¡¦¾¾ËÜ·½»Ê  Monodromy of the hypergeometric differential equation of type (k,n)
    ´î¿ÄÌÉð    On the Wronskian of the hypergeometric functions of type (n+1,m+1)
    ¶â»Ò¾ù°ì    q-Selberg ÀÑʬ¤È Macdonald ¿¹à¼°
    »°Ä®¾¡µ×    Holonomic q-difference system of the first order associated with a Jackson integral of Selberg type
    ´Ø¸ý±Ñ»Ò    Ⱦñ½ãÂоζõ´Ö¤Î Casimir ºîÍÑÁǤÎÆ°·ÂÀ®Ê¬
    ÆâÆ£  Áï    Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras

Âè37²óÂå¿ô³Ø¥·¥ó¥Ý¥¸¥¦¥à  1992 July 28-31      ̾¾ëÂç³Ø
    ¼ã»³Àµ¿Í    Î̻ҷ²¾å¤ÎÈùʬ³Ø¤È¤½¤Î±þÍÑ
    ÈôÅÄÉ𹬡¢º´Æ£Ê¸¹­¡¢·óÅÄÀµ¼£Â¾

¸¦µæ½¸²ñ¡Ö¸½¾Ý¤È¤·¤Æ¤ÎÁÐÂÐÀ­¡×(1992 Aug 4-6)È¡´ÛÅò¥ÎÀî²¹Àô˧ÌÀÁñ
    ÇßÅÄ  µü    ÁÐÂÐÀ­¤È¤¤¤¦¸½¾Ý
    À¹ÅÄ·òɧ    ¥é¥ó¥À¥à¤Ê¸½¾Ý¤Ë¤ª¤±¤ëÁÐÂÐÀ­
    º´Æ£Ê¸¹­    ÁÐÂÐÀ­¤ò±Û¤¨¤¿´Ø¿ôÅù¼°
    ϲÀɧ    Èó²Ä´¹²½¤Ëȼ¤¦ÁÐÂÐÀ­¤Î¤¢¤ê¤«¤¿
    Íî¹ç·¼Ç·    Duality ¤È Symmetry
    ¹â»³¿®µ£    ÅÀ½¸¹ç¤Î·×»»´ö²¿³Ø
    µÈÅÄÀµ¾Ï¡¦¾¾ËÜ·½»Ê  Gauss-Schwarz ÍýÏÀ¤Ï¡¢¤É¤¦¤¤¤¦ÁÐÂÐÀ­¤Ê¤Î¤«
    ¹õÀî¿®½Å    ¾ì¤È¥¼¡¼¥¿=¸ßÀ­¤Î¸«ÃϤ«¤é=
    ÌÊë°ÂÃË    Í­¸ÂÁÐÂÐÀ­¤È̵¸ÂÁÐÂÐÀ­¤Î¸ò¤ï¤ê

ÆüËÜ¿ô³Ø²ñ  1992 Oct  ̾¸Å²°Âç³Ø
  ÆÃÊֱ̹é
    ²ÏÌî½Ó¾æ    ¶¦·Á¾ìÍýÏÀ¤Ë¤ª¤±¤ë modular ·²¤Îɽ¸½¤È¤½¤Î±þÍÑ(Âå¿ô³Ø)
    »°Ä®¾¡µ×    Correlation functions associated with a q-Selberg integral(È¡¿ô²òÀϳØ)

¸¦µæ½¸²ñ¡ÖÎ̻ҷ²¤È¤½¤Î¼þÊÕ¡×(1992 Oct.3-5)̾¸Å²°Âç³Ø
    ½ÂÀîÍÛ°ì    Completely Z symmetric R matrix
    ĹëÀî¹À»Ê  Yang-Baxter ÊýÄø¼°¤Î Belavin ²ò¤ËÉտ魯¤ë Hopf Âå¿ô¤ò¹½À®¤¹¤ë¤¹¤ë»î¤ß
    ÉðÉô¾°»Ö    Generalized 8 vertex model associated to Sklyanin algebra
    ÀÄËÜÏÂɧ¡¦²Ãƣ˧ʸ  Connection coefficients for A-type Jackson integral and Yang-Baxter equation
    »§Ëà½çµÈ¡¦³á¸¶·ò»Ê  Î¥»¶·Ï¤ª¤è¤Ó q-Î¥»¶·Ï¤Ë¤ª¤±¤ë²ÄÀÑʬ·Ï
    »³ÅÄÂÙɧ    On the q-vertex operator for Uq(sl2)
    ¿ÀÊÝÆ»É×    Quantum affine symmetry in lattice models    

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1992.Nov.29-Dec.2)»³·Á¸üÀ¸Ç¯¶âµÙ²Ë¥»¥ó¥¿¡¼                  À¤ÏÃ¿Í Ä¹Ã«Àî¹À»Ê
     ÌÀµ½Ó¡¦ÇßÅĵü¡¦¼ã»³Àµ¿Í  Î̻ҷ²ÈÇdual pair (sl2,on)¤È¤½¤Î Capelli Identity
      M.Nazarov   Yangian of the queer Lie superalgebras
     ÃæÅç  ·¼     Instantons on ALE spaces and canonical bases
     äª  ÃÎÇ·¡¦ÁýÅÄůÌ顦¾åÌî´î»°Íº  Spectral analysis of a q-difference operator which arises from the quantum SU(1,1) group
     ¹¾¸ýÀµ¹¸.ÏÂÅÄÎûҡ¦µÜËÜËãÍý¡¦¾®Àô  ¿­  On the Harish-Chandra C-function for SU(n,1)
     ¼¨Ìî¿®°ì    The Plancherel formula for spherical functions with a one dimensional K-type on a simply connected simple Lie Group of Hermitian type
     »ûÅĽç»Ò    Lie superalgebra ¤Îɽ¸½¤È cohomology
     ÃÓÅÄ  ÊÝ    p¿ÊÂå¿ô·²¤Îɽ¸½ÏÀÆþÌç
     ÈÓÅÄÀµÉÒ    On the orbit decomposition of some affine symmetric spaces
     Åì  ¿´°ì    On a representation of the algebra of invariant
                 differential operators on a homogeneous vector bundle
     ÅÏÊÕ¿­°ì    Affine base space G/N ¾å¤ÎÈùʬºîÍÑÁǴĤȤ½¤ÎWeyl¼«¸ÊƱ·¿

1993(Ê¿À®5)
¸¦µæ½¸²ñ¡ÖSL2¡×¤Î´ö²¿                                             
    ÇßÅÄ  µü    SL2¤ÈÌ¡Ê⡽MUMBULING ON SL2    ¾åÅÄ  ¾¡    µõ¿ô¾èË¡ÏÀ¤È reciprocity law
    ²ÏÌî  ÌÀ    Witten ¤Î index theorem ¤Ë¤Ä¤¤¤Æ
    ²ÏÌî½Ó¾æ¡¦¹âÅÄÉҷá¦ÏµװæÆ»µ×  Representations of modular groups in conformal field theory and 3-manifold invariants
    ¸¶ÅĹ̰ìϺ  SL(2,Z) and the monster simple group     À¾ÅĸãϺ    ¥Û¥â¥È¥Ô¡¼ÏÀ¤«¤é¸«¤¿ÊÝ·¿·Á¼°
    ÅÄÊÕÍýÀµ    Í­¸Â·²¤ÎʬÎà¶õ´Ö¤Î elliptic cohomology ¤È Thompson series ¤Î p-adic analogue
    ²ÃÆ£¹¸»Ê    conformal field theory ¤È A-D-E classification


ÆüËÜ¿ô³Ø²ñ    1993 March Ãæ±ûÂç³Ø
  ÆÃÊֱ̹é
    Ìî¼δ¾¼    Jordan Âå¿ô¤È²òÀϳØ(È¡¿ô²òÀϳØ)
    R.Howe      Multiplicity-free actions in invariant theory(È¡¿ô²òÀϳØ)

¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡Ö¸Åŵ·²¡¦Hecke´Ä¤Îɽ¸½ÏÀ¤ÈÁȹ礻ÏÀ¡×  1993 May 24-28                                                    (»ûÅÄ  »êÂåɽ)
    ÇßÅÄ  µü    Classical and quantum spherical harmonics
    ¼ã»³Àµ¿Í    Quantum dual pair ¤È Capelli ¹±Åù¼°
    R.Howe      Multiplicity-free action and tensor product
    ¾®ÎÓ½Ó¹Ô    Holomorphic discrete series ¤ÎÆþÌç
    Í­ÌÚ  ¿Ê    Higher Specht polynomials
    À®À¥  ¹°    Hecke ´Ä¤Î Specht module ¤È cell ɽ¸½¤Î´Ø·¸
    ²ÃÆ£¿®°ì    Hecke ´Ä¤È R ¹ÔÎó
    ·óÅÄÀµ¼£    rank 1 ¤Î quantum algebra ¤Î cohomology ¤Î·×»»¤Î¼ÂºÝ
    ²¬ÅÄÁï°ì    Reflection-extensions of fusion algebras
    ÌÀµ½Ó    Uq(g) ¤ÎÃæ¿´¸µ¤ÎÆ°·ÂÀ®Ê¬¤È Macdonald ¤Î q º¹Ê¬ºîÍÑÁÇ

Âè32²ó¼ÂÈ¡¿ôÏÀ¡¦Âè31²óÈ¡¿ô²òÀϳعçƱ¥·¥ó¥Ý¥¸¥¦¥à  1993 July 14-16     ¹­ÅçÂç³Ø    (¾¶)
    ÅÚ°æ±Ñͺ    ¿¹à¼°¤Î¶Ò¤Ë´ØÏ¢¤·¤¿¥Õ¥é¥¯¥¿¥ë¤Ë¤Ä¤¤¤Æ
    Íî¹ç·¼Ç·    ¥é¥ó¥¯2¤Î²Ä´¹¤ÊÈùʬºîÍÑÁǷϤˤĤ¤¤Æ

¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö¥ê¡¼·²¤Î¹½Â¤¤Èɽ¸½¤Ë´Ø¤¹¤ë½ôÌäÂê¡×1993.July26-29       (¾¾ÌÚÉÒɧÂåɽ)
    ¹Ô¼ÔÌÀɧ    Highest weight modules and b-functions of semi-invariants
    »³ËÜÆØ»Ò    Ⱦñ½ã¥ê¡¼·²¤Î leading exponent ¤Îµ­½Ò
    µÆÃÓ¹îɧ    ¶ÒÎíLie·²¤ËÉտ魯¤ë Gelfand ÂÐ
    °¤Éô¹Í½ç¡¦²£ÅÄ°ìϺ  ¥³¥ó¥Ñ¥¯¥ÈÂоζõ´Ö¤ÎÂÎÀÑ
    ¾¾ÌÚÉÒɧ    Âå¿ô·²¤Î2¤Ä¤Î involution ¤Ë´Ø¤¹¤ëξ¦¾ê;Îàʬ²ò
    ÀÄÌÚ  ÌС¦²ÃÆ£Ëö¹­  U(n,n)/GL(n,C)¾å ¤ÎÉÔÊѸÇͭĶ´Ø¿ô¤ÎÀܳ¸ø¼°¤Ë¤Ä¤¤¤Æ
    ¼¼  À¯Ï   Îã³°·¿E7¤ÎºîÍѤ¹¤ë³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤ÎÆðÛÉÔÊÑĶ´Ø¿ô
    ÈøȪ¿­ÌÀ   Towards harmonic analysis on Gaussian space
    ¶¶ËÜδ»Ê¡¦ß·¹¾Î´°ì  A central extension of a formal loop group
    ÆâÆ£  Áï   Towards the Kazhdan-Lusztig multiplicity formula for generalized Kac-Moody algebras
     
NUS-JSPS Seminar on Representation Theory and Number Theory(1993.Nov.1-4) ÅìµþÂç³Ø
    ÂçÅçÍøͺ    Continuous famillies of differential operators with  symmetries
    TAN Eng Chye  On the infinitesimal structures of some degenerate  principal series representations
    ¾®ÎÓ½Ó¹Ô    Discontinuous groups for pseudo-Riemannian homogeneous spaces
    ±§Âô  ã    Moment maps for non-symplectic manifolds, a theorem of Borovoi, and convexity theorems
    À¾»³  µý    p+-homologies of highest weight modules and their restrictions
    ZHU Chengbo  On the decay of matrix coefficients of exponential groups
    ¼ã»³Àµ¿Í    Toward an invariant theory for the quantum group symmetry
    YOU Yuching  On the 2-component KP hierarchy
    PENG Tsu Ann  Construction of prime tables
    ÃæÅç¾¢°ì    On Gauss sum characters of finite groups
    LIM Chong Hai  Congruence subgroups of the Hecke group
    ¿¥Åŧ¹¬    Whittaker functions on Sp(2,R)
    LING San  Kernels of degeneracy map between Jacobian of modular curves
    Æ£¸¶°ì¹¨
    WENG Lin  A definition of higher arithmetic K-group
    CHAN Shih Ping  Associated orders of Lubin-Tate extensions
    ¹õÀî¿®½Å    Zeta functions and multiple sine functions 
   
ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1993.Nov.23-26)°ËƦǮÀî¥Ï¥¤¥Ä  À¤ÏÃ¿Í ¾®ÃÓÏÂɧ
    ·§¸¶·¼ºî    On non-unitary representations of the Heisenberg group
    ÅÏÉô  ÈË    Generating functions and integral representations for the spherical functions on some classical Gelfand    pairs
    ¿ùëůÌé    Î̻ҵåÌ̾å¤Î differential ¤È q-Jacobi ¿¹à¼°
    ¾®ÎÓ½Ó¹Ô    Ⱦñ½ã¥ê¡¼·²¤Î¥æ¥Ë¥¿¥êɽ¸½ÏÀÆþÌ硽¡½Vogan-ZuckermanƳÍèÈ¡¼ê,Î¥»¶Åª¤Ê¥æ¥Ë¥¿¥êɽ¸½¡½¡½
    ²¼Â¼¹¨¾´    Configulation space ¾å¤Î measure space ¤È Poisson     measure ¤«¤éÀ¸À®¤µ¤ì¤¿ diffeomorphism ¤Î·²¤Îɽ¸½
    »³²¼  Çî    Gradient ·¿ÈùʬºîÍÑÁÇ,¤Ù¤­Îí¶¦ÌòÎà¤ÈȾñ½ã¥ê¡¼·²¤Îɽ¸½¡½¡½Î¥»¶·ÏÎóɽ¸½¤ò¼´¤È¤·¤Æ¡½¡½
   
1994(Ê¿À®6)

Âè4²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥× 1994 Jan.7-8
    ÇßÅÄ  µü    (GLn,GLm)-duality
    »³º¬¹¨Ç·    Levendorskii-Soivelman ¤Î¾Ò²ð
    ÂçÅçÍøͺ    ÂоÎÀ­¤ò»ý¤Ä´°Á´ÀÑʬ²Äǽ¤ÊÎϳطϵڤÓÎ̻ҷÏI
    ÀÖ°æ  °ï    ÎÌ»ÒÏÀ¤ÎÌëÌÀ¤±
    ¿ÜÆ£À¶°ì    GKM-algebra ¤Î´ú¿ÍÍÂÎ
    Íî¹ç·¼Ç·    ÂоÎÀ­¤ò»ý¤Ä´°Á´ÀÑʬ²Äǽ¤ÊÎϳطϵڤÓÎ̻ҷÏII

ÆüËÜ¿ô³Ø²ñ  1994 April  ¿À¸ÍÂç³Ø
  ÆÃÊֱ̹é
    ¹Ô¼ÔÌÀɧ    ³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤ÎÍýÏÀ¤ÎºÇ¶á¤ÎȯŸ(Âå¿ô³Ø)
    ¶¶ÄÞƻɧ    ̵¸Â¥°¥é¥Õ¤Î¹½Â¤¤È¥¹¥Ú¥¯¥È¥ë(È¡¿ô²òÀϳØ)

¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡Ö̵¸Â¼¡¸µ¶õ´Ö¾å¤Î¬ÅÙÏÀ¡¢Ìµ¸Â¼¡¸µ·²¤Îɽ¸½µÚ¤Ó´ØÏ¢¤·¤¿ÏÃÂê¡×(1994 May 17-19)    »³ºêÂÙϺÂåɽ
    äÇÏ¿­É§    Èó²ÄʬÀ­¤Î¼è°·¤¤¤Ë¤Ä¤¤¤Æ
    ²Ïî´  ½ß    °ìÍͶõ´Ö¾å¤Î¿ä°Ü³ÎΨ¤ÎƱÄøÅÙ°ìÍÍϢ³À­
    ÃÝÃæÌÐÉ×    °ÂÄê·¿³ÎΨ¾ì¤È¤½¤Î·èÄêÀ­
    ²£°æ²Å¹§    ̵¸Â¼¡¸µ Bargmann ¶õ´Ö¤È white noise ÈÆ´Ø¿ô¤Î¶õ´Ö
    ÈøȪ¿­ÌÀ    Fock ¶õ´Ö¾å¤ÎÎ̻ҳÎΨ²áÄø¡½¥Û¥ï¥¤¥È¥Î¥¤¥º¤Î´ÑÅÀ¤«¤é
    Ìø¸¦ÆóϺ    ̵¸Â¼¡¸µ¶õ´Ö¾å¤Î¬Å٤ȾðÊóÍýÏÀ
    ¿åÄ®  ¿Î¡¦º´Æ£  ô  ·²ºîÍѤˤè¤ë¬ÅÙ¤ÎϢ³À­
    ¹â¶¶ÂÙ»Ì    Some results on Bochner-type theorem
    ²¬ºê±ÙÌÀ    Minlos ¤ÎÄêÍý¤ÎµÕ
    »³ºêÂÙϺ¡¦»³ºê°¦°ì  On the gap distribution of prime numbers
    ƶ  ¾´¿Í    ¥ê¡¼´Ä¤Îɽ¸½¤Î¥Æ¥ó¥½¥ëÀѤÎʬ²ò¤«¤éÀ¸¤¸¤ë¥é¥ó¥À¥à¥¦¥ª¡¼¥¯¤Ë¤Ä¤¤¤Æ
    À¾»³  µý    ¥Ù¥¯¥È¥ë¾ì¤Î¤Ê¤¹ Lie ´Ä¤Î¼«Á³É½¸½¤È¤½¤Î¥Æ¥ó¥½¥ëÀÑɽ¸½¤Ë¤Ä¤¤¤Æ
    Ê¿°æ  Éð    ·²¤Îɽ¸½¤È½àÉÔÊѬÅÙ
    ºùËÜÆÆ»Ê    Index for factors generated by direct sums of II1 factors
    ²¼Â¼¹¨¾´    Configuration space ¾å¤Î measure ¤Î¥¨¥ë¥´¡¼¥Éʬ²ò

Âè32²óÈ¡¿ô²òÀϳØʬ²Ê²ñ¥·¥ó¥Ý¥¸¥¦¥à(1994.July25)ÄÅÅĽÎÂç³Ø  
    ÂçÅçÍøͺ    ´°Á´ÀÑʬ²Äǽ¤ÊÎ̻ҷÏ
    ¿ÀÊÝÆ»É×    Î̻ҲÄÀÑʬ·Ï¤Î¾õÂÖ¶õ´Ö

Âè33²ó¼Â´Ø¿ôÏÀ¡¦È¡¿ô²òÀϳإ·¥ó¥Ý¥¸¥¦¥à(1994.July25-27)                                                              ÄÅÅĽÎÂç³Ø  (¾¶)
    °æ¾å½ç»Ò    ²Ä²òLie·²¤Îñ¹àɽ¸½¤È¤¢¤ë¼ï¤ÎÁê¸ßΧ¤Ë¤Ä¤¤¤Æ

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖÅù¼Á¶õ´Ö¾å¤ÎÈó²Ä´¹²òÀϳء×1994.Aug.2-5(»³ÅÄ͵»ËÂåɽ)
    ¾¾ß·½ß°ì    E6·¿¶ËÂç¥È¡¼¥é¥¹Éôʬ·²¤È3¼¡¸µ¶ÊÌÌ
    ÎÓ  ¹§¹¨    II1·¿°ø»Ò´Ä¤Î¥¬¥í¥¢Î̻ҷ²
    ¾åÌî´î»°Íº¡¦À¾ß·Æ»ÃÎ  Î̻ҷ²¤È¥¼¡¼¥¿È¡¿ô
    ÂçÅçÍøͺ    ºÂɸÂоÎÀ­¤ò¤â¤Ä´°Á´ÀÑʬ²Äǽ¤ÊÎ̻ҷÏ
    Çð¸¶Àµ¼ù¡¦Ã«ºê½Ó¹Ô  Kazhdan-Lusztig conjecture for Kac-Moody Lie algebras I,II
    ë¸ý·òÆó    Minimal K-type Whittaker functions of discrete series of some R-rank 1 Lie groups
    µÆÃÓ¹îɧ    ²Ä²ò Lie ·²¾å¤ÎKµåÈ¡¿ô¤ÎÀµÄêÃÍÀ­
    ¾¾ÌÚÉÒɧ    Âå¿ô·²¤Î2¤Ä¤Î Involution ¤Ë´Ø¤¹¤ëξ¦¾ê;Îàʬ²òII
    ÌÀµ½Ó¡¦¿ùëůÌé  ¸Åŵ·¿ÂоÎÂФÎÎ̻Ҳ½¤Èq-ľ¸ò¿¹à¼°
    ÃÓÅÄ  ³Ù    ¶¦·Á¾ì¤Î¥³¥»¥Ã¥È¹½À®
    ¾®Ìº°ìÆÁ¡¦²¬ËÜÀ¶¶¿¡¦¿ûÌî¹ÀÌÀ¡¦ÉÍÅĸ÷¿Í¡¦¸Í±Ûͺ°ìϺ  Kirillov-Kostant ÍýÏÀ¤Ë¤è¤ë Kac-Moody Lie ·²¤Îɽ¸½¤Î Feynman ·Ð                Ï©ÀÑʬ¤Ë¤è¤ë¹½À®  

¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡Ö¥à¡¼¥ó¥·¥ã¥¤¥ó¤ÈĺÅÀºîÍÑÁÇÂå¿ô¡×(1994 Sept 5-9)  µÜËܲíɧÂåɽ
    Chogying Dong  Introduction to vertex operator algebra I
    Hai-sheng Li  Introduction to vertex operator algebra II
    Yi-Zhi Huang  Introduction to vertex operator algebra III
    Koichiro Harada¡¦Mong Lung Lang  Modular forms associated with the monster module
    Bong H.Lian¡¦Gregg J.Zuckerman  Moonshine cohomology
    Victor G.Kac¡¦Seok-Jin Kang  ¼¡¿ôÉÕ¤­¥ê¡¼Âå¿ô¤ËÂФ¹¤ë¥È¥ì¡¼¥¹¸ø¼°¤È¥â¥ó¥¹¥È¥é¥à¥¹¡¦¥à¡¼¥ó¥·¥ã¥¤¥ó

ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñÆÃÊֱ̹é1994.Sept.Åìµþ¹©¶ÈÂç³Ø
    »³¾å  ¼¢    Tensor categories in operator algebras(È¡¿ô²òÀϳØ)
    ÆâÆ£  Áï   ¥à¡¼¥ó¥·¥ã¥¤¥ó²Ã·²¤È generalized Kac-Moody algebraska (È¡¿ô²òÀϳØ)
    ²Ïź  ·ò    Wavelet ÊÑ´¹¤È·²¤Îɽ¸½ÏÀ¡½È¾Ã±½ã Lie ·²¤Î¼ç·ÏÎóɽ¸½¤òÍѤ¤¤¿³ÈÄ¥(¼ÂÈ¡¿ôÏÀ)

Âè30²óɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1994.Nov.16-19)¸â±©¥Ï¥¤¥Ä  À¤ÏÿÍÀ¾»³ µý
    ºØÆ£¶³»Ê    Í­¸ÂÀ¸À®·²¤Î SL2, GL2 ¤Ø¤Îɽ¸½¤Î characteristic variety /Z
    ¾®ÎÓ½Ó¹Ô    ¶ÊÌ̤ÎÀÑʬ´ö²¿¤ÈÊ£ÁÇÅù¼Á¶õ´Ö¤Î Plancherel ·¿ÄêÍý
    G.Schiffmann 
    ¹â¶¶Å¯Ìé    p-¿ÊÂξå¤Î GLn ¤Î´ûÌó supercuspidal ɽ¸½¤È¤½¤Î»Øɸ
    ·§¸¶·¼ºî    On Hardy-Littlewood-Paley space on Riemannian  symmetric spaces
    Ê¡Åç±äµ×    Chiral Potts ÌÏ·¿¤ËÉտ路¤¿Âå¿ô¤ÈÎ̻ҷ²
    ÅÄÃæ½ç»Ò    Lie superalgebra sl(2,1) ¤Î homology
    ²¬ÅÄÁï°ì    Littlewood-Richardson ring for Hecke, Brauer, BMW  algebras
    »°Ä®¾¡µ×   Macdonald polynomial as a vector valued character of quantized universal enveloping algebra Un(gl(n))
    ´¢»³ÏÂ½Ó   4¸µ¿ôÂξå¤Î unitary ·²¤Î tamely ramified supercuspidal ɽ¸½¤Ë¤Ä¤¤¤Æ
    ¼ã»³Àµ¿Í   ¸¶»ÏŪÀ׸ø¼°¤Î±þÍÑ  

¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ
    ÇßÅÄ  µü    Dual pairs from the quantum invariant theoretic point of view  
    ÀÐÀî²íͺ    Minor summation formulas of Pfaffians and its applications to Schur functions type identities
    M.Dijkhuizen  (1+n)-parameter deformation of classical symmetric space: a survey of results and open problems
    G.Olshanski  Harmonic analysis on infinite symmetric groups
    ²¬ÅÄÁï°ì    Application of minor summation formula to rectangular shaped representations of classical groups
    ¿ùëůÌé    Quantum analogue of hypergeometric system associated with Grassmannian Ek,n
    G.Olshanski  Representations of infinite dimensional classical groups and the infinite symmetric group
    Àî±Û        Fusion algebras and knots in solid torus

1995(Ê¿À®7)                  

Âè5²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥× 1995 jAN.8-10
    ²Ïź  ·ò    Wavelet ÊÑ´¹¤Èɽ¸½ÏÀ
    ¾®ÎÓ½Ó¹Ô    Î¥»¶·²¤ÎÅù¼Á¶õ´Ö¤Ø¤ÎºîÍѤ¬¸ÇÍ­ÉÔϢ³¤Ë¤Ê¤ë¤¿¤á¤ÎȽÄê¾ò·ï
    ¼¨Ìî¿®°ì    Boundary value problems for the Shilov boundary of a bounded symmetric doman of yube type
    Ìî¼δ¾¼    Bochner-Hecke Åù¼°¤Î¼þÊÕ
    ¶¶ÄÞƻɧ    On generalized association schemes
    ¾¾ÌÚÉÒɧ    Âå¿ô·²¤ÎÆó¤Ä¤Î involution ¤Ë´Ø¤¹¤ëξ¦¾ê;Îàʬ²ò
    »³º¬¹¨Ç·    A1(1) ·¿Î̻ҷ²¤Î¤¢¤ë¼ï¤Î¥«¥·¥ß¡¼¥ë¸µ¤Ë¤Ä¤¤¤Æ
    µÆÃÓ¹îɧ    ²Ä²ò¥ê¡¼·²¾å¤Î K µåÈ¡¿ô¤È´ûÌó¥æ¥Ë¥¿¥êɽ¸½¤Î¹ÔÎóÀ®Ê¬
    ·§¸¶·¼ºî    ¤Ù¤­Îí¥ê¡¼·²¤ÎÈó¥æ¥Ë¥¿¥êͶƳɽ¸½¤Ë¤Ä¤¤¤Æ
    ¶¶ËÜδ»Ê    Virasoro ºîÍÑÁǤÎÀ¸À®¤¹¤ë one-parameter ·²
    ß·¹¾Î´°ì    On p-adic analysis
    »°Ä»Àî¼÷°ì  ¹ÔÎó´Ä¤Î Dirichret µé¿ô¤Ë¤Ä¤¤¤Æ
    ÀÐÀî²íͺ    Pfaffian ¤È»Øɸ¸ø¼°
    ²¬ÅÄæâ°ì    Minor summation formula ¤Î±þÍÑ

¿ôÍý¸¦¸¦µæ½¸²ñ¡ÖSp(2,R) ¤È SU(2,2) ¾å¤ÎÊÝ·¿·Á¼°¡×(1995 Jan 9-13)    ¿¥Åŧ¹¬Âåɽ
    À¾»³  µý    Ⱦñ½ã Lie ·²¤Î standard ɽ¸½ÆþÌ硽Sp(2,R) ¤È SU(2,2) ¤òÃæ¿´¤Ë¡½
    »°¾å½Ó²ð    »Øɸ¤ÈÉÔÊѸÇͭĶ´Ø¿ô
    ¿¥Åŧ¹¬    Toward wave models of representations of real semisimple Lie groups
    ÁáÅŧÇî    Differential equations for principal series Whittaker functions
    µÜºêÂöÌé    Sp(2,R) ¤ÎµöÍÆɽ¸½¤ËÂФ¹¤ë generalized Bessel function ¤Ë¤Ä¤¤¤Æ
    ÈÓÅÄÀµ½Ó    Matrix coefficients of the principal series representations of Sp(2,R) as hypergeometric functions of C2-type    
    ¿¥Åŧ¹¬    Matrix coefficients of the large discrete series                       representations of Sp(2,R) as hypergeometric series of                 two variables
    ë¸ý·òÆó    Discrete series Whittaker functions of SU(N,1)
    ÅÔÃÛÀµÃË    SU(2,1) ¾å¤Î¼Â¿·Ã«´Ø¿ô
    Ê¿²ì  °ê    SU(2,2) ¤ÎÎ¥»¶·ÏÎóɽ¸½¤Î multiplicity ¤Ë¤Ä¤¤¤Æ
    º£ÌîÂóÌé    U(2,2) ¤Îα¿ô¥¹¥Ú¥¯¥È¥ë
    ¸Å´Ø½Õδ    ÊÝ·¿ L ´Ø¿ô¤È Whittaker ´Ø¿ô(Sp(4) ¤Î¾ì¹ç)
    ¼À¥  ÆÆ¡¦¿ûÌ»Ë  Spherical functions and Rankin-Selberg convolution I Local theory
    ¼À¥  ÆÆ¡¦¿ûÌ»Ë  Spherical functions and Rankin-Selberg convolution II Global theory
    ÅÏÊÕδÉ×    ¥æ¥Ë¥¿¥ê·²¤ÎÊÝ·¿ L ´Ø¿ô¤È¥Æ¡¼¥¿µé¿ô¥ê¥Õ¥È
    ¹âÌî·¼»ù    Standard L-functions for Un,n
    ¿¥Åŧ¹¬¡¦ÉÍȪ˧µª  ¼«ÌÀ¤Êɸ½à°ø»Ò¤ò»ý¤ÄÂå¿ô¶ÊÌ̤Υ⥸¥å¥é¥¤¤ÎĶ±ÛŪ¤ÊÍýÏÀ¤ÎÉü½¬
    µÈÅÄÀµ¾Ï    ÇÛÃÖ¶õ´Ö¤Î°ì°Õ²½  ¡½Ä¶´ö²¿ÀÑʬ
    ¾¾ËÜ·½»Ê    SU(2,2) ¾å¤Î theta ´Ø¿ô
    °Ë¿á»³ÃεÁ  IV·¿ÂоÎÎΰè¾å¤ÎÀµÂ§ÊÝ·¿·Á¼°¤Î¼¡¸µ¸ø¼°
    ÂçÅçÍøͺ    Ⱦñ½ã Lie ·²¤Î´ûÌóɽ¸½¤Î¼ç·ÏÎóɽ¸½¤Ø¤ÎËä¤á¹þ¤ß   ¡½SU(2,2) Åù¤òÎã¤Ë
    ¾®ÎÓ½Ó¹Ô    ¶É½êÂоζõ´Ö¤Î¥³¥Û¥â¥í¥¸¡¼¤È Vogan-Zuckerman ƳÍèÈ¡¼ê²Ã·²ÆþÌç

ÆüËÜ¿ô³Ø²ñǯ²ñ1995.MarchΩ̿´ÛÂç³Ø
  ÆÃÊֱ̹é
    ÏÆËÜ  ¼Â  ¥¹¡¼¥Ñ¡¼Âå¿ô¤Îɽ¸½¤È¤½¤ì¤Ë´ØÏ¢¤¹¤ëÏÃÂê  

Âè34²ó¼Â´Ø¿ôÏÀ¡¦È¡¿ô²òÀϳإ·¥ó¥Ý¥¸¥¦¥à(1995.July 18-20)¡îR·Á»ÔÍ·³Ø´Û¥Û¡¼¥ë    (¾¶)
    ¼¨Ìî¿®°ì  Poisson ÀÑʬ¤È Hua ÊýÄø¼°

¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤Îɽ¸½ÏÀ¤ÈÅù¼Á¶õ´Ö¾å¤Î²òÀϳء×(1995 July 31-Aug 3)   ºØÆ£  ËÓÂåɽ
    ÂÀÅÄÂöÌé    ¼ÂÂå¿ô·²¤Îɸ½àɽ¸½¤Î associated variety ¤È¶ÒÎíµ°Æ»¤ÎͶƳ
    ¼¼  À¯Ï    ÂоιÔÎó¤Î¶õ´Ö¾å¤ÎÉÔÊÑĶ´Ø¿ô¤Î·×»»
    º´Ìî  ÌÐ    ¥Õ¡¼¥ê¥¨²òÀϤÎÈó²Ä´¹²½¤Ø¤ÎºÇ¶á95ǯ´Ö¤ÎÊâ¤ß
    ¸ÞÌÀ  ÃÒ    E8 ·¿Ã±Ï¢·ë¥³¥ó¥Ñ¥¯¥È¥ê¡¼·²¤Î³¬¿ô8¤Î¶ËÂçÉôʬ·²¤Ë¤Ä¤¤¤Æ
    ´Ø¸ý±Ñ»Ò    U(n,n) ¤Î¤¢¤ë´ûÌó¥æ¥Ë¥¿¥êɽ¸½¤Î´ö²¿³ØŪ¼Â¸½¤È¥Ú¥ó¥í¡¼¥ºÊÑ´¹
    ÀÐÀî  Å¯    ¼ÂÁжʶõ´Ö¾å¤ÎÁ´Â¬ÃÏŪ¥é¥É¥óÊÑ´¹¤ÎÁü¤ÎÆÃħÉÕ¤±¤Ë¤Ä¤¤¤Æ            
    ¹õÌÚ  ¸¼    ¶¦·Á¾ìÍýÏÀ¤Ë¸½¤ì¤ëÀþ·ÁÈùʬÊýÄø¼°¤Ë¤Ä¤¤¤Æ
    ëºê½ÓÇ·    ¥¨¥ë¥ß¡¼¥ÈÂоζõ´Ö¾å¤Î Gelfand ·¿Ä¶´ö²¿ÊýÄø¼°
    Ãæë¼Â¿­    Ek,n ¤Î q-analogue ¤Ë¤Ä¤¤¤Æ
    ĹëÀî¹À»Ê  Ruijsenaars ¤Î²Ä´¹º¹Ê¬ºîÍÑÁÇ¤È Yang-Baxter ÊýÄø¼°
    Í­ÌÚ  ¿Ê¡¦ÃæÅçãÍΡ¦»³ÅÄ͵»Ë  A1(1) ¤Î´ðËÜɽ¸½¤È Littlewood-Richardson ·¸¿ô        

ÆüËÜ¿ô³Ø²ñ½©µ¨Áí¹çʬ²Ê²ñÆÃÊÌ¹Ö±é  ÅìËÌÂç³Ø
    ¿ÀÊÝÆ»É×   ³Ê»ÒÌÏ·¿¤Î¸½ºß                      (̵¸Â²ÄÀÑʬ·Ï)
    ÅÚ²°¾¼Çî   ɽ¸½ÏÀ¤È¾ì¤ÎÎÌ»ÒÏÀ¤È¤½¤·¤Æ¥È¥Ý¥í¥¸¡¼(̵¸Â²ÄÀÑʬ·Ï)
    ¿¥Åŧ¹¬   °ìÍøÍѼԤ«¤é¸«¤¿¼Â´ÊÌóÂå¿ô·²¤Îɽ¸½ÏÀ

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1995.Dec.12-15 ) ²­Æì¸üÀ¸Ç¯¶âµÙ²Ë¥»¥ó¥¿¡¼       À¤ÏÃ¿Í ¿û½¤°ì
    ÂçÅçÍøͺ    Capelli identities, degenerate series and hypergeometric functions
    µÈ±ÊÅ°Èþ    The embeddings of discrete series into some induced representations for an exceptional real semisimple Lie group of type G2
    ÈÓÅÄÀµÉÒ    Spherical functions of the principal series representations of SL(2,R)
    ¼¨Ìî¿®°ì    Boudary value problems on Hermitian symmetric spaces
    J.F.van Diejen  Algebras of commuting difference operators with  applications to orthogonal polynomials in several variables 
    »³ËÜÆØ»Ò     Orbits on the flag variety and images of the moment map ¡½¡½For U(p,q) and Sp(p,q)¡½¡½ 
    À¾»³  µý¡¦²¦  ³¤Àô  About commutant algebra of Cartan-type Lie  superalgebra W(n)
    Íî¹ç·¼Ç·    ¤¢¤ë³µ¶Ñ¼Á¥Ù¥¯¥È¥ë¶õ´Ö¤ÎÉÔÊѼ°ÏÀ
    »³¸ý  ³Ø    Ê£ÁǶÀ±Ç·²Gm,p,n¤ÎLittlewood-Richardson ring¤Ë¤Ä¤¤¤Æ
    ¹ñ¾ìÆØÉ×    Quantum Jacobi-Trudi formula for Uq(Br(1)) from analytic Bethe ansatz
    »°Ä»Àî¼÷°ì  On Dirichlet series and regular conjugacy classes in GL(N,Z)
    ´¢»³ÏÂ½Ó    Very cuspidal representations of p-adic symplectic groups

1996(Ê¿À®8)

Âè5²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥× 

ÆüËÜ¿ô³Ø²ñ  1996 April  ¿·³ãÂç³Ø
  ÆÃÊֱ̹é
    »°Ä®¾¡µ×    A solution to quanrum Knizhnik-Zamolodchikov equations and its application to eigenvalue problems of Macdonald type(È¡¿ô²òÀϳØ)
    ÌÀµ½Ó    Î̻ҷ²¤È q ²òÀÏ(̵¸Â²ÄÀÑʬ·Ï)

Âè35²ó¼Â´Ø¿ôÏÀ¡¦È¡¿ô²òÀϳإ·¥ó¥Ý¥¸¥¦¥à(1996.July 22-24)            ÆàÎɽ÷»ÒÂç³Ø  (¾¶)
    Ìî¼δ¾¼    Berezin ÊÑ´¹¤È Lie ·²¤Îɽ¸½
    ¾¾Ëܵ׵Á    Unitary degenerate series of rel reductive groups

¿ôÍý¸¦¸¦µæ½¸²ñ¡Ö·²¤ÈÅù¼Á¶õ´Ö¤Îɽ¸½ÏÀ¡×1996.July29-Aug.15(Íî¹ç·¼Ç·Âåɽ)
    ¹Ô¼ÔÌÀɧ¡¦»³²¼  Çî  Associated variety, Kostant-Sekiguchi correspondence, and locally free U(n) action on Harish-Chandra modules
    »ûÅÄ  »ê¡¦È¬É´¹¬Âç  Sp(2n,R) ¤ÎÎ¥»¶·ÏÎóɽ¸½¤ÎÁȹ礻ÏÀ
    ã·Æ£µÁµ×    crystal base ¤Î´ö²¿³ØŪ¼Â¸½¤Ë¤Ä¤¤¤Æ
    ÃæÅç  ·¼    Âå¿ô¶ÊÌ̤Υҥë¥Ù¥ë¥È³µ·¿,¥Ï¥¤¥¼¥ó¥Ù¥ë¥°Âå¿ô¤ÈĺÅÀÂå¿ô
    »³¸ý  Çî    ¤¢¤ë¼ï¤Î(Èó²Ä´¹)¥³¥ó¥Ñ¥¯¥È·²¾å¤Î F.-M.RieszÄêÍý¤Ë¤Ä¤¤¤Æ
    ë¸ý·òÆó    Weyl ·²ÉÔÊѤÊÈùʬºîÍÑÁǴĤΰì°ÕÀ­¤Ë¤Ä¤¤¤Æ
    ±§Âô  ã
    ¾¾ÌÚÉÒɧ  ¥ê¡¼·²¤Î2¤Ä¤Î involution ¤ÎʬÎà¤È¥ë¡¼¥È·Ï
    ÌÀµ½Ó¡¦»°Ä®¾¡µ×  Hecke ´Ä¤Îɽ¸½¤È Selberg ·¿ q ÀÑʬ
    ºØÆ£¶³»Ê    Generalized root systems of Witt index less or equal 2
                ¤Þ¤¿¤Ï
                Product of eta-functions for regular systems of weights
    ºØÆ£¶³»Ê    Elliptic Weyl ·²¤Î Coxeter-like ɽ¼¨
    º£ÌîÏÂ»Ò    Super Lie algebra sl(m|l) ¤ÎÉÔÊÑ¿¹à¼°¤Ë¤Ä¤¤   ¡½Chevalley ·¿¤ÎÄêÍý
    ÅÚ²°¾¼Çî    ¶¦·Á¾ì, Degenerate Dorulele Affine Hecke Algebra  Haldame-Shastly ·Ï

ÆüËÜ¿ô³Ø²ñ  1996 Sept  ÅìµþÅÔΩÂç
  Áí¹ç¹Ö±é
    ÀÄËÜÏÂɧ(ÆüËÜ¿ô³Ø²ñ½©´ü¾Þ)
  ÆÃÊֱ̹é
    ¿¥Åŧ¹¬    ÊÝ·¿¤Î¿ôÏÀ¤Î¤¿¤á¤Î¼ÂĴϲòÀÏ(50¼þǯµ­Ç°)
    »³ÅÄ͵»Ë    Affine Lie algebras and reduced Schur functions(Âå¿ô³Ø)

¿ôÍý¸¦Ã»´ü¶¦Æ±¸¦µæ¡Ö¸Åŵ·²¡¦Î̻ҷ²¤Îɽ¸½ÏÀ¤ÈÁȹ礻ÏÀ¡×1996 Oct 28-Nov 1   ÀÐÀî²íͺÂåɽ
    ¿¹ÅÄ±Ñ¾Ï    CL-shellability of ordered structure of reflection systems
    ¹ñ¾ìÆØÉ×    Spectral decomposition of the corner transfer matrices by skew Young diagrams
    Í­ÌÚ  ¿Ê    TBA
    ¾®¿ÜÅIJí	 ¥Ø¥Ã¥±¥«¥Æ¥´¥ê¡¼¤Î´ûÌóɽ¸½
    ÀÖºäΩÌé    Finite-dimensional representations of quantized affine algebras
    »³º¬¹¨Ç·    Ram¤ÎÏÀʸ¤Î¾Ò²ð;BMW-algebra¤Î»Øɸ¤È ¦Ë ring notation
    ÅÄÀî͵Ƿ    A combinatorial formula for Kazhdan-Lusztig polynomials of parabolic type
    À¾»³  µý    GLn¤Îɽ¸½¤ò n ¼¡Âо粤ËÀ©¸Â¤·¤¿¤È¤­¤Îʬ²òˡ§
    ¹â¶¶ÂçÊå    º¹Ê¬ÊýÄø¼°¤«¤é¥»¥ë¥ª¡¼¥È¥Þ¥È¥ó¤òÆÀ¤ë¤Ë¤Ï?ĶΥ»¶²½¤Î´ðÁäȱþÍÑ
    Ä»µï  ¿¿    ¸ÍÅijʻҤȺÇŬ²½ÌäÂê

¡Öɽ¸½ÏÀ¤È¤½¤Î¼þÊÕ¡×(1996 Nov.5-8)ÁÒÉß»Ô ¹ñºÝ³Ø½Ñ¸òή¥»¥ó¥¿¡¼  À¤ÏÃ¿Í ¿ÜÆ£À¶°ì,¼¨Ìî¿®°ì
    »³ÅĽ¤»Ê    ·ë¤ÓÌܤÎÏÃ(»Ò¤Ïï±)
    ÅÄÀî͵Ƿ    Áȹ礻ÏÀŪ»ëÅÀ¤«¤é¤ß¤¿ parabolic type ¤Î  Kazhdan-Lusztig polynomial 
    Íî¹ç͵Ƿ    Harish-Chandra homomorphism of U(gln)
    ƶ  ¾´¿Í    µðÂç¤ÊĺÅÀ¿ô¤Î¥°¥é¥Õ¤Î¾å¤Î¥é¥ó¥À¥à¥¦¥ª¡¼¥¯¤Ë¤ª¤±¤ëÂоÎÀ­¤ÈÎ׳¦¸½¾Ý
    »°Ä®¾¡µ×    Macdonald ¤Î¸ÇÍ­ÃÍÌäÂê¤Ë¤ª¤±¤ëÍ­ÍýÈ¡¿ô²ò
    ¾®ÎÓ½Ó¹Ô    Vanishing theorem of modular symbols on locally symmetric spaces
    ¼ã»³Àµ¿Í    Chebotarev equidistribution theorm for holonomies 
    ¿¥Åŧ¹¬    Âè2¼ï¤Îµå´Ø¿ô¤È¥â¥¸¥å¥é¡¼Â¿ÍÍÂΤΥ⥸¥å¥é¡¼Åª°ø»Ò¤Î¥°¥ê¡¼¥ó´Ø¿ô            
    ¾¾ÌÚÉÒɧ     Double coset decompositions of Lie groups arising from two involutions
    Gary Seitz   Double cosets in albebraic groups
    H.Rubenthaler  Zeta functions associated to certain families of real symmetric spaces
    µÜËܲíɧ    Vertex operator algebra constructed from Code and its representations

ɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à(1996.Nov.19-22 ) °¦Ãθ©³ÛÅÄ·´»°²Ï¥Ï¥¤¥Ä  À¤ÏÃ¿Í ²¬ÅÄÁï°ì¡¦ÎÓ ¹§¹¨
    À¾»³  µý    On Weyl-Schur's duality for Cartan-type Lie (super) algebras
    Íî¹ç·¼Ç·    ÆóÌÌÂ粤ËÉտ路¤¿²ÄÀÑʬ·Ï
    °ÀÅıѻñ¡¦¾®ÃÝ  ¸ç¡¦µ×ÊÝÀ²¿®¡¦ÇòÀÐ ½á°ì  Virasoro ·¿Âå¿ô¤È²Ä²òÌÏ·¿
    ²ÃÆ£¿®°ì    Whittaker - ¿·Ã«´Ø¿ô
    ¾®ÎÓ½Ó¹Ô    ¥æ¥Ë¥¿¥êɽ¸½¤ÎÀ©¸Â¤È¤½¤Î±þÍѤˤĤ¤¤Æ
    Zhu Chengbo On certain small unitary representations of indefinite orthogonal groups
    Mathijs S. Dijkhuizen  Quantization of Poisson structures on complex Grassmannians and some multidimensional q-Selberg integrals
    Í­ÌÚ  ¿Ê    Ê£ÁǶÀ±Ç·²¤Î¥Ø¥Ã¥±´Ä¤Îɽ¸½ÏÀ¤Ë¤Ä¤¤¤Æ
    ¹ÓÀîÃι¬¡¦ÎëÌÚÉð»Ë  Double degenerate affine Hecke algebra and K-Z equation 
    µÆÃϹîɧ    Jordan 3 ½Å·Ï¤È Heisenberg ·²¾å¤Î K µåÈ¡
    ¾®Àô  ¿­¡¦¹¾¸ýÀµ¹¸  SU(n,1) ¤Î Harish-Chandra c-function ¤Ë¤Ä¤¤¤Æ
    °æ¾å ½ç»Ò    ²Ä²ò Lie ·²¤Î holomorphically induced representation

¡ÖĶ´ö²¿·Ï¥ï¡¼¥¯¥·¥ç¥Ã¥×  in  ¿À¸Í¡×1996 Dec 2-5  ¿À¸ÍÂç³Ø
    µÈÅÄÀµ¾Ï    ¹¬±¿¤Ë¤â¸«¤Ä¤«¤Ã¤¿°¦¤¹¤Ù¤­Èþ¤·¤¤È¡¿ô¤Î¤³¤È
    Çß¼  ¹À    Painleve ÊýÄø¼°¤ËÉտ魯¤ëÆü쿹༰
    »³ÅÄÂÙɧ    ¶¦·Á¾ìÍýÏÀ¤ÈĶ´ö²¿È¡¿ô
    ¾®ÅçÉðÉ×    ¥Ü¡¼¥º¥¬¥¹¤ÎÁê´ØÈ¡¿ô¤È Painleve ÊýÄø¼°
    ´Ø¸ý¼¡Ïº    ÇÛÃÖ¶õ´Ö¤ÈADE¿ô³Ø
    ¶â»Ò¾»¿®    Ķ´ö²¿¤ÈĶÆðÛÂʱ߶ÊÀþ
    »Ö²ì¹°Åµ¡¦À®µÜÆÁɧ¡¦ÂçÄÍ  ¿¿¡¦¾®ÃÓ·òÆó  Report from our down-to-earth working on mirror symmetry of K3 surfaces 
    ÌÀµ½Ó    Î̻ҲÄÀÑʬ·Ï¤È affine Hecke ´Ä
    °ËÆ£²íɧ    ¥ë¡¼¥È·Ï¤ËÉտ魯¤ë¥¸¥ã¥¯¥½¥óÀÑʬ¤È¥Ý¥¢¥ó¥«¥ìµé¿ô
    ¼¨Ìî¿®°ì    µåÈ¡¿ô¤ÈĶ´ö²¿È¡¿ô
    ëºê½ÓÇ·    Ķ´ö²¿ÊýÄø¼°¤Î·²ÏÀŪ¹Í»¡
    ¿¿Å罨¹Ô    ÈóÀƼ¡¹çή·¿Ä¶´ö²¿ÈùʬÊýÄø¼°¤Îȯ»¶²ò¤Î¹½Â¤
    ¹â»³¿®µ£    À°¿ô·×²èË¡¤ÈĶ´ö²¿Â¿¹à¼°
    Âç°¤µ×½Ó§  D²Ã·²¤Îb´Ø¿ô¤ÈÀ©¸Â¤Î·×»»¤Î¥¢¥ë¥´¥ê¥º¥à
    ¾¾ËÜ·½»Ê    ¹çή·¿Ä¶´ö²¿´Ø¿ô¤Ë´Ø¤¹¤ë¸òÅÀÍýÏÀ¤Î´°À®¤Ë¸þ¤±¤Æ
    »°Ä®¾¡µ×    α¿ô²òÀϤˤè¤ë¥Þ¥¯¥É¥Ê¥ë¥ÉÆâÀÑÃÍͽÁۤξÚÌÀ

1997(Ê¿À®9)         
Ä»¼èɽ¸½ÏÀ¥·¥ó¥Ý¥¸¥¦¥à1997(Âè6²ó¥ê¡¼·²¤Èɽ¸½ÏÀÄ»¼è¥ï¡¼¥¯¥·¥ç¥Ã¥×)Jan.5 Ä»¼èÂç³Ø
    ÂçÅçÍøͺ    Bruhatʬ²ò¤ÈHarish-Chandra homomorphisms
    »³²¼  Çî    ¥ê-¥Þ¥óÂоζõ´Ö¾å¤ÎÉÔÊÑÈùʬºîÍÑÁǤÈHarish-Chandra²Ã·²¤ÎÌÏ·¿
    Çð¸¶Àµ¼ù    Representation theory and Geometry
    ëºê½ÓÇ·    Ķ´ö²¿ÊýÄø¼°¤Î·²ÏÀŪ¹Í»¡
    Íî¹ç·¼Ç·    ¼Â5¼¡¸µÁжʶõ´Ö¾å¤Î¤¢¤ëÆüì´Ø¿ô
    ¾®ÎÓ½Ó¹Ô    O(p,q) ¤Î minimal ɽ¸½¤Ë¤ª¤±¤ë dual pair
    ¼ã»³Àµ¿Í    À׸ø¼°¤Î»ÈÍÑË¡ 
    Ìî¼δ¾¼    Multiplicity-free action ¤È Berezin ÊÑ´¹
    µÆÃÓ¹îɧ    Heisenberg·²¾å¤ÎO(n)-µåÈ¡¿ô
    °æ¾å½ç»Ò    ¶ÒÎí¤ª¤è¤Ó²Ä²ò Lie ·²¤Î holomorphically induced representation
    À¾»³  µý    Sp(2n,R) ¤Î¥æ¥Ë¥¿¥êºÇ¹â¥¦¥§¥¤¥Èɽ¸½¤Î Bernstein ¼¡¿ô¤Ë¤Ä¤¤¤Æ
    ë¸ý·òÆó    r-2 ·¿¥Ý¥Æ¥ó¥·¥ã¥ë¤ò»ý¤Ä¥Ï¥ß¥ë¥È¥Ë¥¢¥ó¤È²Ä´¹¤ÊÈùʬºîÍÑÁǤˤĤ¤¤Æ
         
 Poguntke¶µ¼ø¤ò°Ï¤à¸¦µæ½¸²ñ  1997.3.6-7Æü  µþÅÔÂç³ØÍý  À¤ÏÃ¿Í  Ìî¼δ¾¼
    µÆÃϹîɧ    On Gelfand pairs associated to non type I solvable Lie groups
    ·§¸¶·¼ºî    Non-unitary representations and orbits for some nilpotent Lie groups
    Detlev POGUNTKE  A short proof of the injectivity of the Harish-Chandra transform
    ¿ÜƣδÍÎ    Dimension theory of group C*-algebras of type I
    ²Ïź  ·ò    Atomic Hardy spaces and maximal operators on semisimple Lie groups
    ¿·²°  ¶Ñ    Banach representability for a kind of semi-direct groups
    °æ¾å½ç»Ò    Holomorphically induced representations of some solvable Lie groups


¥·¥ó¥Ý¥¸¥¦¥à¤ÎÎò»Ë¤Î¥Ú¡¼¥¸¤ËÌá¤ë
½¸²ñ¡¦¥»¥ß¥Ê¡¼¤Î¥Ú¡¼¥¸¤ËÌá¤ë
ÆüËܸì¥Û¡¼¥à¥Ú¡¼¥¸¤ËÌá¤ë

Last Update :