Heckman-Opdam hyperge functions and their specia

Nobukazu Shimeno (示野信

Department of Applied Mathema Okayama University of Science

August 26, 2007

Tambara Workshop 2007 Geometry and Representations in Lie

joint work in progress with Toshio Osh

Heckman-Opdam hypergeometric sy tem) and hypergeometric functions (H

- $\mathfrak{a} \simeq \mathbb{R}^n$ with $\langle , \rangle, \Sigma \subset \mathfrak{a}^*$ root system of rank n, k_{α} $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$
- HO system $D F = \gamma(D)(\lambda) F (D \in \mathbb{D}(k))$
- $L(k) = \sum_{i=1}^{n} \partial_i^2 + \sum_{\alpha \in \Sigma^+} 2k_\alpha \coth \alpha \,\partial_\alpha$

 $\mathbb{D}(k)$: commuting family of differential operators \exists HO HGF $F(\lambda, k; a)$ is a unique analytic solution system with $F(\lambda, k; e) = 1$, if *k* is generic.

rank one case : $n = 1 \Rightarrow$ HO HGF can be written b If $2k_{\alpha}$ = multiplicity of $\alpha \in \Sigma = \Sigma(\mathfrak{g}, \mathfrak{a})$, then H cal functions on a Riemannian symmetric space of G/K and L(k), $\mathbb{D}(k)$ is the radial part of the Laplace invariant differential operators, respectively. (group

Specializations of HO HGF & HO sys

Confluences

- degenerate limit to the class-one Whittaker fun ple Lie groups (eigenfunction for Toda model)
- other Toda-like limits

Restrictions to 1-dimensional singular sets (interse Weyl group)

• ODE (in some cases without accessry paramet

application: value of the HO HGF at the origin
 Real forms

- a generalization of *K*-invariant eigenfunctions
 operators on pseudo-Riemmanian symmetric s
- construction of a basis for the analytic solution

Confluences (1): review of known resu $L(k) = \sum_{i=1}^{n} \partial_i^2 + \sum_{\alpha \in \Sigma^+} 2k_\alpha \coth \alpha \,\partial_\alpha \,, \quad \rho(k) = \sum_{\alpha \in \Sigma^+} k_\alpha \alpha$

 $L(k)u = (\langle \lambda, \lambda \rangle - \langle \rho(k), \rho(k) \rangle)u$

Replacing $x = \log a \rightarrow \varepsilon x$, $\lambda \rightarrow \lambda/\varepsilon$ and letting $\varepsilon \downarrow$ becomes

 $L(\tilde{k})_{\text{rat}} u = \langle \lambda, \lambda \rangle u,$

where

$$L(\tilde{k})_{\text{rat}} = \sum_{i=1}^{n} \partial_i^2 + \sum_{\alpha \in \Sigma_0^+} \frac{2k_{\alpha} + 2k_{\alpha/2}}{\alpha} \partial_{\alpha}$$

 $\Sigma_0 = \{ \alpha \in \Sigma : 2\alpha \notin \Sigma \}, \tilde{k}_\alpha = k_\alpha + k_{\alpha/2} \text{ for } \alpha \in \Sigma_0, k_{\alpha/2} = 0$

limit transition of *W***-invariant analytic solutio Theorem** (Ben Saïd and Ørsted, de Jeu)

 $F(\lambda/\varepsilon, k; \exp \varepsilon x) \to J(\lambda, \tilde{k}; \exp x)$ (ε

where *J* is the Bessel function associated with Σ_0 , whi eigenfunction of commuting family of differential operato

Special cases (group case and rank 1 case)

- In the group case, $L(\tilde{k})_{rat}$ is radial part of the I ator on G_0/K (the tangent space of G/K at the theorem gives a limit transition of the spherical G_0/K .
- If n = 1, then the limit transition in the above to of the Gauss HGF to the Bessel J function.

Confluences (2): limit to the classfunction on real semisimple Lie group

The following content overlaps with my talk in the workshop

Put $\delta(k)^{1/2} = \prod_{\alpha \in \Sigma^+} (2 \sinh \alpha)^{k_\alpha}$. Then

 $\delta(k)^{1/2} \circ (L(k) + \langle \rho(k), \rho(k) \rangle) \circ \delta(k)^{-1}$ $= \sum_{i=1}^{n} \partial_i^2 + \sum_{\alpha \in \Sigma^+} \frac{k_\alpha (1 - k_\alpha - 2k_{2\alpha}) \langle \alpha}{\sinh^2 \alpha}$

6

The existence of the commuting family of differential $H_{\text{CMS}}(k)$ proves integrability of the quantum Calogero-Momodel with Hamiltonian $H_{\text{CMS}}(k)$.

limit transition from CMS to Toda Hamiltoni

Temporary, we assume that Σ is reduced. For M > 0, denoted $2k_M(\alpha)(k_M(\alpha) - 1)\langle \alpha, \alpha \rangle = e^{2M}$

and define $a_M \in A$ by

$$\log a_M = w_0 \log a + M \rho^{\vee},$$

where $\rho^{\vee} = \frac{1}{2} \sum_{\alpha \in \Sigma^+} \alpha^{\vee}$ is the Weyl vector of $\Sigma^{\vee} = \{\alpha^{\vee} = w_0 \in W \text{ is the longest element of the Weyl group } W \text{ of } \Sigma$. simple roots in Σ^+ and define

$$H_{\mathrm{T}} = \sum_{i=1}^{n} \partial_{i}^{2} - 2 \sum_{\alpha \in \Psi} e^{2\alpha}.$$

Lemma (Inozemtsev) For any $\varphi \in C^{\infty}(A)$,

 $\lim_{M\to\infty}H_{\rm CMS}(k_M)\,\varphi(a_M)=H_{\rm T}\,\varphi(a).$

limit transition of joint eigenfunctions for CM

limit transition of the Harish-Chandra series $\Phi(\lambda, k; a) = a^{\lambda - \rho(k)} + \cdots : \text{ series solution of } L(k)u = \Phi_{T}(a) = a^{\lambda} + \cdots : \text{ series solution of } H_{T}u = \langle \lambda, \lambda \rangle u$ $\Phi(\lambda, k; a) \text{ (resp. } \Phi_{T}(a)\text{) becomes a joint eigenfunctiin ily of differential operators } \mathbb{D}(k) \text{ (resp. } \mathbb{D}_{T}).$

 $\delta(k_M; a_M)^{1/2} \Phi(\lambda, k_M; a_M) \to \Phi_{\mathrm{T}}(a) \quad (a)$

definition of HO HGF in terms of the HC series (reduced)

$$\tilde{c}(\lambda, k) = \prod_{\alpha \in \Sigma^{+}} \frac{\Gamma((\langle \lambda, \alpha^{\vee} \rangle + k_{\alpha/2})/2)}{\Gamma((\langle \lambda, \alpha^{\vee} \rangle + k_{\alpha/2} + 2k_{\alpha})/2)}, \quad c$$
$$F(\lambda, k; a) = \sum_{w \in W} c(w\lambda, k) \Phi(w\lambda, k)$$

Remarks

- In the group case, $c(\lambda, k)$ is Harish-Chandra's o
- In a series of papers around 1990, Heckman a for generic k, F(λ, k; a) defined by the above for tinued to (λ, a) ∈ a^{*}_C × A, F(λ, k; e) = 1, and invariant analytic solution of HO system subjection

Problem

What is the limit of $F(\lambda, k; a)$ corresponding to the $H_{\text{CMS}} \rightarrow H_{\text{T}} \ (M \rightarrow \infty, k_M \rightarrow \infty)$? (Inspired by Hira: Answer

radial part of the class-one Whittaker function with real split semisimple Lie group with the restricted r

class-one Whittaker function with moderate g

G : real split semisimple Lie group of finite center, G = NAK : Iwasawa decomposition, $\Sigma = \Sigma(\mathfrak{g}, \mathfrak{a}), \rho = \frac{1}{2} \sum_{\alpha} Define a character \psi$ of \mathfrak{n} by $\psi(X_{\alpha}) = \sqrt{-1}$, where $X_{\alpha} \in \mathfrak{g}^{\alpha}$ length ($\alpha \in \Psi$). $1_{\lambda}(nak) = a^{\lambda+\rho}$ ($n \in N, a \in A, k \in K$)

$$W(\lambda,\psi;g) = \int_N 1_{\lambda}(\bar{w}_0^{-1}ng)\psi(n)^{-1}dn$$

Theorem $\lim_{M \to \infty} \delta(k; a_M)^{1/2} \tilde{c}(\rho(k_M), k_M) \prod_{\alpha \in \Sigma^+} \Gamma(k_M(\alpha)) F(\lambda)$ = $\tilde{c}(\rho) f(\lambda) a^{-\rho} W(\lambda, \psi; \alpha)$

where $\tilde{c}(\lambda)$ is $\tilde{c}(\lambda, k)$ with $k_{\alpha} = 1/2$ ($\alpha \in \Sigma$) and

$$f(\lambda) = \prod_{\alpha \in \Sigma^+} \left(2 \langle \alpha, \alpha \rangle \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \rangle + 1 \right)^{\langle \lambda, \alpha^{\vee} \rangle / 4} \Gamma(\left(\langle \lambda, \alpha^{\vee} \wedge \wedge + 1 \right)^{\langle \lambda, \alpha^{\vee} \wedge \wedge \wedge \wedge + 1 \right)$$

Previously I proved the above theorem by using an $W(\lambda, \psi; a)$ in terms of $\Phi_T(w\lambda, a)$ ($w \in W$) that is due In the rank one case, the above theorem is a conflue to the Macdonald *K* function. Define $k_M > 0$ by $4k_A$ we have

$$F(\lambda, k; a_x) = {}_2F_1(\frac{1}{2}(k - \lambda), \frac{1}{2}(k + \lambda); k + 1)$$
$$\lim_{M \to \infty} k_M^{-1/2} 2^{-k_M} \sinh^{k_M}(-x + M)F(\lambda, k_M; a_{-x+M})$$

Confluences (3): limit to Toda-like sys

If Σ is an irreducible root system with two different Toda-like Hamiltonians that are different from H_T . Toda- BC_n $R(x) = C_0 \sum_{i=1}^n e^{-2(x_i - x_{i+1})} + C_3 e^{-2x_n} + C_3$ Trig- A_{n-1} -bry-reg

 $R(x) = C_0 \sum_{1 \le i < j \le n} \sinh^{-2}(x_i - x_j) + \sum_{l=1}^n (C_1 e^{-2x_l} + C_1 e^{-2x_l})$ (Here *R*(*x*) is the potential function for the Schrödin

Toda-BC_n with C₀, C₃, C₄ ≠ 0 appears as a radio perator with respect to G = NAK with one-d tions of N and K for G/K Hermitian symmetric Completely integrable systems and their hierarchy a cal root systems were thoroughly studied by Oshir Among quantum integrable systems, CMS model (limits form a class whose joint eigenfunctions are explicitly form a class whose joint eigenfunctions are explicitly of the system of the system

Theorem 1) (existence of limit as integrable systems) For and $k_M(\alpha)$ (explicitly given corresponding to the potential $x \in \mathfrak{a}$ with x + v M and consider limit as $M \to \infty$. Then the holomorphically to the confluent commuting system of dir 2) limit of HO HGF is of moderate growth) A suitably converges to the solution $\overline{W}(x)$ of the confluent system vthat is

$${}^{\exists}C > 0, \ m > 0 \ \text{s.t} \ |\overline{W}(x)| \le Ce^{m|x|}$$

3) (uniqueness) Global analytic solutions of the confluent erate growth are unique up to constant multiples.

4) (good estimate for reduced root sytems) If Σ is reduce estimate of $\overline{W}(x)$ for Toda- Σ (Toda model with the Hamilt

 $|\bar{W}(x)| \le e^{\operatorname{Re}\langle\lambda,x\rangle}, \quad |\bar{W}(x)| \le C \exp(-e^{K\operatorname{di}})$

where *C* is the open positive Weyl chamber.

Restrictions of HO system to singular

 $L(k) = \sum_{i=1}^{n} \partial_i^2 + \sum_{\alpha \in \Sigma^+} 2k_\alpha \coth \alpha \,\partial_\alpha \text{ and } D \in \mathbb{D}(k) \text{ h}$ $\alpha(x) = 0 \text{ for } \alpha \in \Sigma.$

Problem Study ODE satisfied by the restrictions of local an sytem on a 1-dimensional singular set.

Case of A_{n-1}

 $L(k) = \sum_{i=1}^{n} \partial_{x_i}^2 + \sum_{1 \le i < j \le n} k \coth(x_i - x_j)(\partial_{x_i} - \partial_{x_j})$

The restriction of HO system to singular set $x_2 = (A_{n-1}, A_{n-2})$ become ODE of rank *n* satisfied by geonary or rank 2 case : calculate the induced DE on the computer algebra system Maple.

 $z = e^{2(x_1 - x_2)}, \lambda = (\lambda_1, \lambda_2, \lambda_3)$ with $\lambda_1 + \lambda_2 + \lambda_3$ Riemann scheme

 $\begin{cases} z = 0 \quad z = 1 \quad z = 0 \\ k + \lambda_1/2 \quad 0 \quad k - \lambda_1 \\ k + \lambda_2/2 \quad 1 - 3k \quad k - \lambda_2 \\ k + \lambda_3/2 \quad 2 - 3k \quad k - \lambda_3 \end{cases}$

local monodromy type (1, 1, 1), (1, 2), (1, 1, 1)This Fuchsian equation is determined by the R the equation is accessory parameter free.

general case: Calculating monodromy at the or coordinate) by using representations of Hecke that local monodromy types are (1, ..., 1), (1, *r* the equation becomes the generalized hyperged

Application: value of HO HGF at the origin

Proof of $F(\lambda, k; e) = 1$ due to Opdam is indirect. One of motivations to study restrictions of the HO s. In the case of A_{n-1} we can calculate the value of HO sugning

- connection formula of HO HGF (*c*-function)
- connection formula of GHGF (Okubo-Takano-
- the following identity for trigonometric function

$$\sum_{j=1}^{n} \frac{\prod_{1 \le i \le n, i \ne j} \sin(\frac{1}{2}(\lambda_i - \lambda_j) + k)\pi}{\prod_{1 \le i \le n, i \ne j} \sin\frac{1}{2}(\lambda_i - \lambda_j)\pi}$$

Case of BC_n

 $L(k) = \sum_{i=1}^{n} \partial_{x_i}^2 + \sum_{l=1}^{n} (k_1 \coth x_l + 2k_2 \coth 2x_l) \partial_{x_l}$ $+ \sum_{1 \le i < j \le n} k_3 (\coth(x_i - x_j)(\partial_{x_i} - \partial_{x_j}) + k_3 \coth(x_i))$

The restriction of HO system to singular set $x_2 = x_1(B_n, B_{n-1})$ becomes a Fuchsian DE of rank 2n with points (say 0, 1, ∞) on \mathbb{P}^1 of local monodromy typ $(n, n), (n, n - 1, 1), (1, \dots, 1)$, which is free from a (even family EF_{2n} of Simpson (1992)).

• rank 2 case : by using Maple.

• general case: by using representations of Heck

We computed restrictions of HO system also for r $(x_1 = x_2 \text{ for } BC_2, \alpha_1^{\perp} \text{ or } \alpha_2^{\perp} \text{ for } G_2)$ by using Maple. there exist accessory parameters.

Real forms of HO system (HO $_{\epsilon}$ system

$$A_1 \operatorname{case} L(k) = \frac{d^2}{dx^2} + 2k \operatorname{coth} x \frac{d}{dx}$$

$$F(\lambda, k; x) = c(\lambda, k) \Phi(\lambda, k; x) + c(-\lambda, k) \Phi(-\lambda, k; x)$$

$$\Phi(\lambda, k; x) = e^{(\lambda - k)x} {}_2F_1(-\lambda + k, k, -\lambda + 1; e^{-2x})$$

$$k = 1/2 \rightsquigarrow G/K = SL(2, \mathbb{R})/SO(2) \ (G = KAK)$$

$$L(k)_{\epsilon} = \frac{d^2}{dx^2} + 2k \tanh x \frac{d}{dx}$$
 (*L(k)* with $x \mapsto x$

 $\Phi_{\epsilon}(\lambda, k; x) = c(\lambda, k)\Phi(\lambda, k; x + \frac{1}{2}\pi\sqrt{-1})$: analytic eigenfu

$$\Phi_{\epsilon}(-\lambda,k;-x) = \frac{\sin \pi \lambda}{\sin \pi (\lambda+k)} \Phi_{\epsilon}(\lambda,k;x) + \frac{\sin \pi k}{\sin \pi (\lambda+k)} \Phi_{\epsilon}(\lambda,k;x)$$

 $k = 1/2 \rightsquigarrow G/K_{\epsilon} = SL(2,\mathbb{R})/SO_0(1,1) \ (G = KAK_{\epsilon})$

Problem Generalization to higer rank cases

Group case : Oshima-Sekiguchi (1980) Rank two cases : Sekiguchi (2005)

 $\epsilon : \Sigma \to \{\pm 1\}, \quad \epsilon(\alpha + \beta) = \epsilon(\alpha)\epsilon(\beta)$ signature of roots

$$L(k)_{\epsilon} = \sum_{i=1}^{n} \partial_i^2 + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \coth \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \, \partial_{\alpha} + \sum_{\alpha \in \Sigma^+, \epsilon(\alpha) = 1} 2k_{\alpha} \cosh \alpha \,$$

 $(L(k) \text{ with a change of variable } x \mapsto x + \sqrt{-1}v_{\epsilon} \text{ for a } v_{\epsilon} \in \mathbb{D}(k)_{\epsilon}$: commuting family of differential operators $\ni L(k)_{\epsilon}$

Group case : $L(k)_{\epsilon}$ is radial part of the Casimir operator of (ex. $G/K = SL(n, \mathbb{R})/SO(n)$, $G/K_{\epsilon} = SL(n, \mathbb{R})/SO_0(p, n + Radial parts of the Casimir operator on general semisimpl$ <math>G/H (G = KAH) are of the form $L(k)_{\epsilon}$ (Heckman (1994),

 $W_{\epsilon} = \langle s_{\alpha} : \epsilon(\alpha) = 1 \rangle \subset W$ # $W/W_{\epsilon} = r, W_{\epsilon} \setminus W = \{v_1 = e, v_2, \dots, v_r\}$

 $C \subset \mathfrak{a}$: open positive Weyl chamber

Theorem 1) The dimension of the analytic solutions of the generic *k*.

2) There exists a basis $F_{\epsilon}(\lambda, k; x) = (F_{\epsilon}^{(1)}(\lambda, k; x), \dots, F_{\epsilon})$ solutions of HO_{ϵ} system such that

$$F_{\epsilon}(\lambda, k; v_i x) = \sum_{w \in W} c(w\lambda, k) A_w^{\epsilon}(\lambda, k)_{i-\text{th row}} \Phi_{v_i}(w\lambda, k, x)$$

Here $\Phi_v(w\lambda, k, x) \sim e^{(\lambda - \rho(k))(x)} + \cdots$ is a series solution on *u* are intertwining matrices of size *r* that satisfy

$$A_{w_1w_2}^{\epsilon}(\lambda,k) = A_{w_1}^{\epsilon}(w_2\lambda,k)A_{w_2}^{\epsilon}(\lambda,k) \quad (w_1, u_2) \in \mathcal{A}_{w_1}^{\epsilon}(\lambda,k)$$

 $F_{\epsilon}(\lambda, k; x) = F_{\epsilon}(w\lambda, k; x)A_{w}^{\epsilon}(\lambda, k) \quad (w \in \mathbb{R})$

For a simple reflection s_{α} , $A_{s_{\alpha}}^{\epsilon}(\lambda, k)$ is a direct product of the form

$$A(s,k) = \begin{pmatrix} \frac{\sin \pi k}{\sin \pi (s+k)} & \frac{\sin \pi s}{\sin \pi (s+k)} \\ \frac{\sin \pi s}{\sin \pi (s+k)} & \frac{\sin \pi k}{\sin \pi (s+k)} \end{pmatrix}, \quad \frac{\cos \frac{1}{2}\pi(s)}{\cos \frac{1}{2}\pi(s)}$$

Example
$$A_2$$
: $\Psi = \{e_1 - e_2, e_2 - e_3\}$
 $\epsilon(e_1 - e_2) = 1, \ \epsilon(e_2 - e_3) = -1, \ W_{\epsilon} = \{1, s_1\}$
 $A_{s_1}^{\epsilon}(\lambda) = \begin{pmatrix} 1 \\ A(\lambda_1 - \lambda_2, k) \end{pmatrix}, \ A_{s_2}^{\epsilon}(\lambda) = \begin{pmatrix} A \\ A(\lambda_1 - \lambda_2, k) \end{pmatrix}$

Proof

- rank 1 reduction
- $A_w(\lambda)^{\epsilon}$ is well-defined (does not depend on a c w in terms of simple reflections \leftarrow enough to cl