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Heckman-Opdam hypergeometric system (HO sys-

tem) and hypergeometric functions (HO HGF)
▼ a ' Rn with 〈 , 〉, Σ ⊂ a∗ root system of rankn, kα ∈ C, kwα = kα (w ∈W),

λ ∈ a∗C
▼ HO systemD F = γ(D)(λ) F (D ∈ D(k))

L(k) =
∑n

i=1 ∂
2
i +

∑
α∈Σ+ 2kα cothα ∂α

D(k) : commuting family of differential operators3 L(k)

▼ HO HGF F(λ, k; a) is a unique analytic solution onA = expa of HO

system withF(λ, k; e) = 1, if k is generic.

▼ rank one case: n = 1 ⇒ HO HGF can be written byGauss HGF.

▼ If 2kα = multiplicity of α ∈ Σ = Σ(g, a), then HO HGF is the spheri-

cal functions on a Riemannian symmetric space of the non-compact type

G/K andL(k), D(k) is the radial part of the Laplace-Beltrami operator, the

invariant differential operators, respectively. (group case)
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Specializations of HO HGF & HO system
▼ Confluences

◦ degenerate limit to the class-oneWhittaker functionson real semisim-

ple Lie groups (eigenfunction forToda model)

◦ other Toda-like limits

▼ Restrictionsto 1-dimensional singular sets (intersections of walls of the

Weyl group)

◦ ODE (in some cases without accesory parameter)

◦ application: value of the HO HGF at the origin (An−1 case)

▼ Real forms

◦ a generalization ofK-invariant eigenfunctions of invariant differential

operators on pseudo-Riemmanian symmetric spacesG/Kε

◦ construction of a basis for the analytic solutions
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Confluences (1): review of known results

L(k) =

n∑

i=1

∂2
i +

∑

α∈Σ+

2kα cothα ∂α , ρ(k) =
∑
α∈Σ+ kαα

L(k)u = (〈λ, λ〉 − 〈ρ(k), ρ(k)〉)u

Replacingx = loga → εx, λ → λ/ε and lettingε ↓ 0, the above equation

becomes
L(k̃)ratu = 〈λ, λ〉u,

where

L(k̃)rat =

n∑

i=1

∂2
i +

∑

α∈Σ+
0

2kα + 2kα/2
α

∂α.

Σ0 = {α ∈ Σ : 2α < Σ}, k̃α = kα + kα/2 for α ∈ Σ0, kα/2 = 0 if α/2 < Σ
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limit transition of W-invariant analytic solution of HO system

Theorem (Ben Säıd and Ørsted, de Jeu)

F(λ/ε, k; expεx) → J(λ, k̃; expx) (ε ↓ 0),

where J is the Bessel function associated withΣ0, which is an analytic joint

eigenfunction of commuting family of differential operators containingL(k̃)rat.

▼ Special cases (group case and rank 1 case)

◦ In the group case,L(k̃)rat is radial part of the Laplace-Beltrami oper-

ator onG0/K (the tangent space ofG/K at the origin), and the above

theorem gives a limit transition of the spherical function fromG/K to

G0/K.

◦ If n = 1, then the limit transition in the above theorem is a confluence

of theGauss HGFto theBesselJ function.
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Confluences (2): limit to the class-one Whittaker

function on real semisimple Lie groups
The following content overlaps with my talk in the workshop here last year.

Putδ(k)1/2 =
∏

α∈Σ+ (2 sinhα)kα . Then

δ(k)1/2 ◦ (L(k) + 〈ρ(k), ρ(k)〉) ◦ δ(k)−1/2

=

n∑

i=1

∂2
i +

∑

α∈Σ+

kα(1− kα − 2k2α)〈α, α〉
sinh2α

=: HCMS(k).

The existence of the commuting family of differential operators containing

HCMS(k) proves integrability of the quantumCalogero-Moser-Sutherland (CMS)

modelwith HamiltonianHCMS(k).
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limit transition from CMS to Toda Hamiltonian

Temporary, we assume thatΣ is reduced.For M > 0, definekM : Σ → R+ by

2kM(α)(kM(α) − 1)〈α, α〉 = e2M

and defineaM ∈ A by
logaM = w0 loga + M ρ∨,

whereρ∨ = 1
2

∑
α∈Σ+ α∨ is the Weyl vector ofΣ∨ = {α∨ = 2α/〈α, α〉 ; α ∈ Σ} and

w0 ∈W is the longest element of the Weyl groupW of Σ. Let Ψ denote the set of

simple roots inΣ+ and define

HT =

n∑

i=1

∂2
i − 2

∑

α∈Ψ
e2α.

Lemma (Inozemtsev) For anyϕ ∈ C∞(A),

lim
M→∞

HCMS(kM)ϕ(aM) = HT ϕ(a).
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limit transition of joint eigenfunctions for CMS to Toda model

▼ limit transition of theHarish-Chandra series

Φ(λ, k; a) = aλ−ρ(k) + · · · : series solution ofL(k)u = (〈λ, λ〉−〈ρ(k), ρ(k)〉)u
ΦT(a) = aλ + · · · : series solution ofHTu = 〈λ, λ〉u
Φ(λ, k; a) (resp.ΦT(a)) becomes a joint eigenfunction of commuting fam-

ily of differential operatorsD(k) (resp.D T).

δ(kM; aM)1/2Φ(λ, kM; aM)→ ΦT(a) (M → ∞)

▼ definition of HO HGFin terms of the HC series (not necessarilyΣ to be

reduced)

c̃(λ, k) =
∏

α∈Σ+

Γ((〈λ, α∨〉 + kα/2)/2)

Γ((〈λ, α∨〉 + kα/2 + 2kα)/2)
, c(λ, k) =

c̃(λ, k)
c̃(ρ(k), k)

F(λ, k; a) =
∑

w∈W
c(wλ, k)Φ(wλ, k; a)
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▼ Remarks

◦ In the group case,c(λ, k) is Harish-Chandra’s c-function.

◦ In a series of papers around 1990, Heckman and Opdam proved that

for generick, F(λ, k; a) defined by the above formula analytically con-

tinued to (λ,a) ∈ a∗C × A, F(λ, k; e) = 1, and gives the uniqueW-

invariant analytic solution of HO system subject to these conditions.

▼ Problem

What is the limit ofF(λ, k; a) corresponding to the limit of Hamiltonian

HCMS→ HT (M → ∞, kM → ∞) ? (Inspired by Hirano-Ishii-Oda (2006))

▼ Answer

radial part of the class-oneWhittaker function with moderate growthon a

real split semisimple Lie group with the restricted root systemΣ
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class-one Whittaker function with moderate growth

G : real split semisimple Lie group of finite center,

G = NAK : Iwasawa decomposition,Σ = Σ(g, a), ρ = 1
2

∑
α∈Σ+ α

Define a characterψ of n byψ(Xα) =
√−1, whereXα ∈ gα is a root vector of unit

length (α ∈ Ψ). 1λ(nak) = aλ+ρ (n ∈ N, a ∈ A, k ∈ K)

W(λ, ψ; g) =

∫

N
1λ(w̄

−1
0 ng)ψ(n)−1dn

Theorem lim
M→∞

δ(k; aM)1/2 c̃(ρ(kM), kM)
∏

α∈Σ+

Γ(kM(α)) F(λ, kM; aM)

= c̃(ρ) f (λ) a−ρ W(λ, ψ; a),

wherec̃(λ) is c̃(λ, k) with kα = 1/2 (α ∈ Σ) and

f (λ) =
∏

α∈Σ+

(2〈α, α〉)〈λ,α∨〉/4 Γ((〈λ, α∨〉 + 1)/2).
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▼ Previously I proved the above theorem by using an explicit expression of

W(λ, ψ; a) in terms ofΦT(wλ,a) (w ∈W) that is due to Hashizume (1982).

▼ In therank one case, the above theorem is a confluence of theGauss HGF

to theMacdonaldK function. DefinekM > 0 by 4kM(kM − 1) = e2M. Then

we have

F(λ, k; ax) = 2F1(
1
2

(k− λ),
1
2

(k + λ) ; k +
1
2

; − sinh2 x),

lim
M→∞

k−1/2
M 2−kM sinhkM (−x + M)F(λ, kM; a−x+M) =

1√
π

Kλ(e
x/2).
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Confluences (3): limit to Toda-like systems
▼ If Σ is an irreducible root system with two different root lengths, there are

Toda-like Hamiltonians that are different fromHT. For example

Toda-BCn R(x) = C0
∑n

i=1 e−2(xi−xi+1) + C3e−2xn + C4e−4xn

Trig-An−1-bry-reg

R(x) = C0
∑

1≤i< j≤n sinh−2(xi − x j) +
∑n

l=1(C1e−2xl + C2e−4xl )

(HereR(x) is the potential function for the Schrödinger operator)

◦ Toda-BCn with C0, C3, C4 , 0 appears as a radial part of the Casimir

operator with respect toG = NAK with one-dimensional representa-

tions ofN andK for G/K Hermitian symmetric space of tube type.

▼ Completely integrable systems and their hierarchy among them for classi-

cal root systems were thoroughly studied by Oshima (SIGMA 3 (2007)).

Among quantum integrable systems, CMS model (↔ HO system) and its

limits form a class whose joint eigenfunctions are easy to analyze.
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Theorem 1) (existence of limit as integrable systems)For a suitable vectorv ∈ a
andkM(α) (explicitly given corresponding to the potential functionR(x)), replace

x ∈ a with x+ vM and consider limit asM → ∞. Then the HO system continued

holomorphically to the confluent commuting system of differential equations.

2) limit of HO HGF is of moderate growth)A suitably normalized HO HGF

converges to the solution̄W(x) of the confluent system with moderate growth,

that is
∃C > 0, m> 0 s.t |W̄(x)| ≤ Cem|x|

3) (uniqueness)Global analytic solutions of the confluent system with the mod-

erate growth are unique up to constant multiples.

4) (good estimate for reduced root sytems)If Σ is reduced, we have an explicit

estimate ofW̄(x) for Toda-Σ (Toda model with the HamiltonianHT):

|W̄(x)| ≤ eRe〈λ,x〉, |W̄(x)| ≤ C exp(−eK dist(x,C)),

whereC is the open positive Weyl chamber.
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Restrictions of HO system to singular sets
L(k) =

∑n
i=1 ∂

2
i +

∑
α∈Σ+ 2kα cothα ∂α and D ∈ D(k) have singularities along

α(x) = 0 for α ∈ Σ.

ProblemStudyODEsatisfied by therestrictionsof local analytic solutions of HO

sytem on a1-dimensional singular set.

Case ofAn−1

L(k) =
∑n

i=1 ∂
2
xi

+
∑

1≤i< j≤n kcoth(xi − x j)(∂xi − ∂x j )

▼ The restriction of HO system to singular setx2 = x3 = · · · = xn (type

(An−1,An−2)) becomeODE of rankn satisfied by generalized HGFnFn−1.

◦ rank 2 case: calculate the induced DE on the singular set by using

computer algebra system Maple.
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z = e2(x1−x2), λ = (λ1, λ2, λ3) with λ1 + λ2 + λ3 = 0

Riemann scheme


z = 0 z = 1 z = ∞
k + λ1/2 0 k− λ1/2
k + λ2/2 1− 3k k− λ2/2
k + λ3/2 2− 3k k− λ3/2



local monodromy type (1,1,1), (1,2), (1,1,1)

This Fuchsian equation is determined by the Riemann scheme, that is

the equation isaccessory parameter free.

◦ general case: Calculating monodromy at the origin (z = 1 in the above

coordinate) by usingrepresentations of Hecke algebra, we can show

that local monodromy types are (1, . . . , 1), (1,n−1), (1, . . . , 1), hence

the equation becomes the generalized hypergeometric equation.
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Application: value of HO HGF at the origin

▼ Proof of F(λ, k; e) = 1 due to Opdam is indirect. Giving another proof is

one of motivations to study restrictions of the HO system to singular sets.

▼ In the case ofAn−1 we can calculate the value of HO HGF at the origin by

using

◦ connection formula of HO HGF (c-function)

◦ connection formula of GHGF (Okubo-Takano-Yoshida (1988))

◦ the following identity for trigonometric functions:

n∑

j=1

∏
1≤i≤n, i, j sin(1

2(λi − λ j) + k)π
∏

1≤i≤n, i, j sin 1
2(λi − λ j)π

=
sinnkπ
sinkπ
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Case ofBCn

L(k) =
∑n

i=1 ∂
2
xi

+
∑n

l=1(k1 cothxl + 2k2 coth 2xl)∂xl

+
∑

1≤i< j≤n k3(coth(xi − x j)(∂xi − ∂x j ) + k3 coth(xi + x j)(∂xi + ∂x j )

▼ The restriction of HO system to singular setx2 = x3 = · · · = xn = 0 (type

(Bn, Bn−1)) becomes a Fuchsian DE of rank 2n with three regular singular

points (say 0, 1, ∞) onP1 of local monodromy type

(n,n), (n,n− 1,1), (1, . . . , 1), which isfree from accessory parameters

( even familyEF2n of Simpson (1992)).

◦ rank 2 case: by using Maple.

◦ general case: by usingrepresentations of Hecke algebra.

▼ We computed restrictions of HO system also forremaining rank 2 cases

(x1 = x2 for BC2, α⊥1 orα⊥2 for G2) by using Maple. In each of these cases,

there exist accessory parameters.
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Real forms of HO system (HOε system)

A1 case

L(k) =
d2

dx2
+ 2kcothx

d
dx

F(λ, k; x) = c(λ, k)Φ(λ, k; x) + c(−λ, k)Φ(−λ, k; x)

Φ(λ, k; x) = e(λ−k)x
2F1(−λ + k, k,−λ + 1;e−2x)

k = 1/2 G/K = S L(2,R)/S O(2) (G = KAK)

L(k)ε =
d2

dx2
+ 2k tanhx

d
dx

(L(k) with x 7→ x + 1
2π
√−1)

Φε(λ, k; x) = c(λ, k)Φ(λ, k; x+ 1
2π
√−1) : analytic eigenfunctions ofL(k)ε for ±λ

Φε(−λ, k;−x) =
sinπλ

sinπ(λ + k)
Φε(λ, k; x) +

sinπk
sinπ(λ + k)

Φε(λ, k;−x)

k = 1/2 G/Kε = S L(2,R)/S O0(1,1) (G = KAKε)
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Problem Generalization to higer rank cases

Group case: Oshima-Sekiguchi (1980)

Rank two cases: Sekiguchi (2005)

ε : Σ→ {±1}, ε(α + β) = ε(α)ε(β) signature of roots

L(k)ε =

n∑

i=1

∂2
i +

∑

α∈Σ+,ε(α) = 1
2kαcothα ∂α +

∑

α∈Σ+,ε(α) = −1
2kαtanhα ∂α

(L(k) with a change of variablex 7→ x +
√−1vε for a vε ∈ a)

D(k)ε : commuting family of differential operators3 L(k)ε  HOε system

Group case: L(k)ε is radial part of the Casimir operator onG/Kε (G = KAKε)

(ex. G/K = S L(n,R)/S O(n), G/Kε = S L(n,R)/S O0(p,n− p))

Radial parts of the Casimir operator on general semisimple symmetric spaces

G/H (G = KAH) are of the formL(k)ε (Heckman (1994), H. Sekiguchi).
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Wε = 〈sα : ε(α) = 1〉 ⊂W

#W/Wε = r, Wε\W = {v1 = e, v2, . . . , vr }
C ⊂ a : open positive Weyl chamber

Theorem 1) The dimension of the analytic solutions of the HOε system isr for

generick.

2) There exists a basisFε(λ, k; x) = (F(1)
ε (λ, k; x), . . . , F(r)

ε (λ, k; x)) of analytic

solutions of HOε system such that

Fε(λ, k; vi x) =
∑

w∈W
c(wλ, k)Aε

w(λ, k)i-th rowΦvi (wλ, k, x) (1 ≤ i ≤ r, x ∈ C)

HereΦv(wλ, k, x) ∼ e(λ−ρ(k))(x) + · · · is a series solution onvx ∈ vC) andAε
w(λ, k)’s

are intertwining matrices of sizer that satisfy

Aε
w1w2

(λ, k) = Aε
w1

(w2λ, k)Aε
w2

(λ, k) (w1, w2 ∈W).

Fε(λ, k; x) = Fε(wλ, k; x)Aε
w(λ, k) (w ∈W)
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For a simple reflectionsα, Aε
sα (λ, k) is a direct product of matrices and scalars

of the form

A(s, k) =


sinπ k

sinπ (s+k)
sinπ s

sinπ (s+k)

sinπ s
sinπ (s+k)

sinπ k
sinπ (s+k)

 ,
cos1

2π(s− k)

cos1
2π(s+ k)

, 1.

▼ Example A2 : Ψ = {e1 − e2, e2 − e3}
ε(e1 − e2) = 1, ε(e2 − e3) = −1, Wε = {1, s1}

Aε
s1

(λ) =

(
1

A(λ1 − λ2, k)

)
, Aε

s2
(λ) =

(
A(λ2 − λ3, k)

1

)

▼ Proof

◦ rank 1 reduction

◦ Aw(λ)ε is well-defined (does not depend on a choice of expression of

w in terms of simple reflectionsf enough to check in rank two cases)
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