Graded Hecke algebras

Dan Ciubotaru

Based on joint work with D. Barbasch, P. Trapa.

1 Unequal parameters graded Hecke algebra

Type	c	${f geometric}$
$\overline{B_n}$	$c(\epsilon_1 - \epsilon_2) = 1$	$c \in \mathbb{Z} \left(SO(m, \mathbb{C}) \right)$
	$c(\epsilon_n) = c > 0$	$c \in 1/2 + \mathbb{Z} \left(Sp(m, \mathbb{C}) \right)$
		$c \in \pm 1/4 + \mathbb{Z} \ (Spin(m, \mathbb{C}))$
		$c \notin 1/2\mathbb{Z}$ (Kato "exotic nilpotent cone" of $Sp(2n,\mathbb{C})$)
G_2	$c(\alpha_s) = 1, c(\alpha_l) = c$	$c = 3 (E_6)$
$\overline{F_4}$	$c(\alpha_s) = 1, c(\alpha_l) = c$	$c = 2 (E_7)$

There is also an independent "harmonic analysis" classification due to Opdam for the affine Hecke \mathcal{H} in all (?) cases.

2 Classification of $G_{0,\chi} \setminus \mathfrak{g}_{1,\chi}$

Kawanaka 1987 classified the $G_{0,\chi}$ orbits on $\mathfrak{g}_{1,\chi}$.

There are finitely many orbits, so there is a unique open orbit.

The simplest example is when $\chi = \check{\rho}$. Then

$$\mathfrak{g}_{1,\check{\rho}} = \bigoplus_{\alpha \in \Pi} \mathbb{C} \cdot X_{\alpha},$$

where X_{α} are root vectors, and $G_{0,\check{\rho}}$ is the Cartan H.

So

$$G_{0,\check{\rho}} \backslash \mathfrak{g}_{1,\chi} \longleftrightarrow 2^{\Pi},$$

$$\mathcal{O}_P = \sum_{\alpha \in \Pi_P} \mathbb{C}^* \cdot X_{\alpha} \longleftarrow \Pi_P \subset \Pi.$$

In this case, all orbits have smooth closure. Moreover, the closure ordering is just the inclusion of subsets of simple roots.

In general, Lusztig 2006 gives a reformulation of Kawanaka's classification by "good" parabolic subalgebras, and an algorithm for computing KL polynomials.

3 Zelevinski's matching

 $G = GL(n, \mathbb{C})$, $W = S_n$. The geometric parameters for \mathbb{H} can be viewed as *multisegments*. The geometric parameters for category \mathbb{O} correspond to elements of S_n . There matching of geometric parameters so that the KL polynomials are the same.

$$G_{0,\chi}\backslash\mathfrak{g}_{1,\chi}\hookrightarrow S_n$$

assigns to every multisegment a product of cycle permutations.

For example, at $\chi = \check{\rho}$ for GL(3):

Multisegments	S_n
• • •	()
●-● ●	(12)
• •-•	(12) (23) (123)
●	(123)

4 Matching for $GL(n, \mathbb{R})$ (with P. Trapa)

Example of parametrization

Take
$$\chi = (5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1)$$
. So
$$G_{0,\chi} \simeq GL(2) \times GL(4) \times GL(3) \times GL(2) \times GL(1)$$

For instance, one multisegment is

Defining $\Phi: G_{0,\chi} \backslash \mathfrak{g}_{1,\chi} \longrightarrow \Sigma_{\pm}(n)$

Flatten:

5 Reducibility of standard modules

We consider the Hecke algebra with equal parameters. Let $\Pi_P \subset \Pi$ be maximal, $\{\alpha\} = \Pi - \Pi_P$. Let $\check{\omega}$ denote the fundamental coweight for α .

If $\mathfrak{p} = \mathfrak{m} + \mathfrak{n}$ is the corresponding Lie algebra, σ is attached to a map $\mathfrak{s}l(2) \hookrightarrow \mathfrak{m}$.

Then \mathfrak{n} is an $\mathfrak{s}l(2)$ -module, via the adjoint action of \mathfrak{m} .

The coweight $\check{\omega}$ commutes with the $\mathfrak{s}l(2)$. Decompose \mathfrak{n} as $\mathfrak{n} = \bigoplus_{i=1}^k \mathfrak{n}_i$, where \mathfrak{n}_i is the *i*-eigenspace of $\check{\omega}$.

Decompose each \mathfrak{n}_i into simple $\mathfrak{s}l(2)$ -modules $\mathfrak{n}_i = \bigoplus_j (d_{ij})$, where (d) is the simple $\mathfrak{s}l(2)$ -module of dimension d.

The following result is known from Muić-Shahidi; the Hecke algebra proof follows from the geometric classification.

Theorem 5.1 (M-S, Barbasch-C). Let σ be a generic tempered module. Then the reducibility points $\nu > 0$ of $X(P, \sigma, \nu)$ are

$$\left\{\frac{d_{ij}+1}{2i}\right\}_{i,j}.$$

Proof. Let χ be the central character.

Let $\mathcal{O}^{\chi}(P,\sigma)$ be the orbit corresponding to $\overline{X}(P,\sigma,\nu)$.

The generic module is parametrized by the trivial local system on the *open* orbit \mathcal{O}_{op}^{χ} . So $X(P, \sigma, \nu)$ is irreducible if and only if

$$\mathcal{O}^{\chi}(P,\sigma) = \mathcal{O}_{op}.$$

From Lusztig's algorithm 2006:

$$\dim \mathcal{O}^{\chi}(P,\sigma) = \dim \mathfrak{g}_{0,\chi} - \dim(\mathfrak{g}_{0,\chi} \cap \bar{\mathfrak{p}}) + \dim(\mathfrak{g}_{1,\chi} \cap \bar{\mathfrak{p}}).$$

But dim $\mathcal{O}_{op} = \dim \mathfrak{g}_{1,\chi}$.

Write the roots $\Delta(\bar{p}) = \Delta(\mathfrak{m}) \cup \Delta(\bar{\mathfrak{n}})$. The dimension argument says that $\mathcal{O}^{\chi}(P,\sigma) = \mathcal{O}_{op}$ if and only if

$$\#\{\alpha \in \Delta(\mathfrak{n}) : \langle \alpha, \chi \rangle = 1\} = \#\{\alpha \in \Delta(\mathfrak{n}) : \langle \alpha, \chi \rangle = 0\}.$$

Consider the rational function of ν :

$$\prod_{\alpha \in \Delta(\mathfrak{n})} \frac{1 - \langle \alpha, \chi \rangle}{\langle \alpha, \chi \rangle}.$$

The reducibility points are given by the zeros of this function.

One partial result for non-generic data:

Corollary 5.2. Let σ' be a tempered module, in the same L-packet with the generic tempered σ . Then the reducibility points of $X(P, \sigma', \nu)$ are a subset of the reducibility points of $X(P, \sigma, \nu)$.

6 Generic unitary dual

The spherical principal series $X(\chi)$ is reducible if and only if $\langle \alpha, \chi \rangle = 1$, for some positive root α .

Theorem 6.1 (Barbasch-C.). The set of unitary spherical generic parameters CS(0) is a union of k simplices (alcoves) in the dominant Weyl chamber, where:

 G_2 : k=2

 F_4 : k = 2

 E_6 : k = 2

 E_7 : k = 8

 E_8 : k = 16.

Figure 1: Generic unitary dual of G_2

One partitions the spherical unitary dual into pieces $CS(\mathcal{O})$ parametrized by nilpotent orbits.

Let Exc denote the following set of nilpotent orbits:

$$Exc = \{\underbrace{A_1\widetilde{A}_1}_{F_4}, \underbrace{A_23A_1}_{E_7}, \underbrace{A_4A_2A_1, A_4A_2, D_4(a_1)A_2, A_32A_1, A_23A_1, 4A_1}_{E_8}\}.$$

(The notation is as in the Bala-Carter classification.)

Then the generic unitary dual of \mathbb{H} can be described as follows.

Theorem 6.2 (Barbasch-C.).

1. If $\mathcal{O} \notin Exc$, then

$$CS(\mathcal{O}) = CS_{\mathfrak{z}(\mathcal{O})}(0).$$

- 2. If $\mathcal{O} \in Exc$, and $\mathcal{O} \neq (4A_1 \subset E_8)$, then $CS(\mathcal{O}) \subsetneq CS_{\mathfrak{z}(\mathcal{O})}(0)$.
- 3. If $\mathcal{O} = (4A_1 \subset E_8)$, then $CS(\mathcal{O}) \supseteq CS_{\mathfrak{z}(\mathcal{O})}(0)$.

Note that by the Iwahori-Matsumoto involution, this gives the spherical unitary dual as well.