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Jacquet modules

@ G = KApNp: a semisimple Lie group and its lwasawa decomposition.

@ g=Et® ap @ ng: the complexification of the Lie algebra of
G = KA.

@ V: a Harish-Chandra module (Fréchet representation).
@ V': the continuous dual of V.
0 (Vifinite)” = Homc(Vifinite, C).

We define the following two modules:
J(V)={ve V' |3k nfv=0}
J*(V) = {V c (VK—finite)* ‘ E”(7 név = 0}

Notice that J'(V) = J*(V) (Casselman-Wallach). This is called the
Jacquet module.
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Jacquet modules

G = KAgNp: a semisimple Lie group and its lwasawa decomposition.

g =t D ap ®ng: the complexification of the Lie algebra of
G = KApNp.

V: a Harish-Chandra module (Fréchet representation).

V': the continuous dual of V.
(Vik-finite)* = Homc ( Vik-finite, C).

e & ¢ ¢

We define the following two modules:

J(V)={veV |3k, kv =0},
J*(V) = {V € (VK_ﬁnite)* | dk, kV = 0}
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Motivations

HomgyK(VK-ﬁnite? Indl?lo(lNo)) = HOmnO(VK-finite7 lNo)
= {v € (VK-finite)" | nov = 0}
= H%(ng, (Vik-finite)*)-

“to know H%(ng, (Vi finite)*)”
<= "to know Homg x (Vik-finite, |ndlc\;/0(1No))”
<= "to know
However V — HO(ng, (Vi-finite)*) is exact.

= V= JY(V): .
Ho(n07 (VK—finite)*) = HO(UO, J*(V))
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Whittaker models

“Generalization”

S g

{v € (Vk-finite)* | nov = 0} ~» {v € (Vk_finite)* | (Kern)v = 0}
Homg k (VK -finite, |ndﬁo(1No)) ~» Homg k (Vi-finites |nd/€/0(77))-

“homomorphisms to the principal series representations”
~» “homomorphisms to Ind,(\;,0 n" : Whittaker model.

e © ¢ ¢

J;] corresponds to the moderate growth homomorphism.
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degenerate principal series representations

(]

P = MAN: a parabolic subgroup of G and its Langlands
decomposition.

p=m® adn: the complexification of the Lie algebra of P = MAN.
o: a finite-length representation of M (Fréchet representation).

A € a* = (Lie(A)c)*: a one-dimensional representation of A.

p(H) = (Trad(H)|.)/2 for H € a: one dimensional representation of
A.

Put

I(0,4) = C*-Ind§ (0 @ (A + p))
In this talk we consider J;(/(a, A)) and J;(/(a, A)).
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Example: G = SL(2,R)

G = SL(2,R), K = SO(2), P = Py: minimal parabolic
n = 0: trivial representation.
@ \: not integral or A/2 is integral.
= I(1,A) and /(1,—)) are irreducible and /(1,\) ~ /(1,—\).
= dimHom(/(1,)),/(1,\)) =1
dimHom(/(1,A),/(1,—X)) =1
= dim Ho(no, (/(1, )\)K_ﬁnite)*) =2.
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SL(2,R)

Example: G = SL(2,R)

@ \: integral, A/2 is not integral, A is dominant.

I(1, X) K-finite:
sub
- B l
¢-
I(L, =) K-finite: quotient
quotient
e B l
i
sub

= dimHom(/(1, ), /(1,\)) = 1, dimHom(/(1,A), /(1,—X)) =1
= dim Ho(no, (I(l, )\)K-finite)*) =2.
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SL(2,R)

Example: G = SL(2,R)

@ \: integral, A/2 is not integral, A is anti-dominant.

(1, A) K-finite:
quotient
| B N l
i
(1, =) K-finite: sub
sub
¢ N B |
i

quotient
= dimHom(/(1, ), /(1,\)) =1, dimHom(/(1,A), (1, —X)) =
= dim Ho(no, (I(l, )\)K-finite)*) = J.
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Main Theorem

@ W: the little Weyl group of G.
o W(M) = {w € W | w(positive roots of M) C positive roots of G}.
o W(M) = {w,...,w} such that |J;_; Now;P/P C G/P is a closed
subset.
Theorem
If 0 is not unitary then J;(I(a,)\)) = 0.

Assume that 1 is unitary. There exists a filtration {I;} of J;(I(c,\)) such
that

Q /i/li1 # 0 if and only if | ad(w;)nrm, = 0 and J"N.,ln(a ®@(A+p)#0
QIf /,'//,'_1 =% 0 then /,'//,'_1 ~ TWi’n(U(g) ®U(p) Jllxv._ln(a ® ()\ + p)))

where T, , is the twisting functor (precise explanation will be appeared).
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Main Theorem (2)

V: U(g)-module.
o C(V) = ((V*)p-finite)™ (h: Cartan subalgebra)
If V =6,cq- Voo (h-weight decomposition) then C(V) =[], cp+ Vi
o (V) ={veV]|3k (Kernkv=0}. (J(V)=T,(V),
Iy (V) = T ((V-finite) )

Theorem
There exists a filtration {I;} of Jy(I(a, ) such that
i/ li1 >~ Ty(C(Tw,(U(g) @u(p) I (0 @ (A +p)))))-

where T, = T,, o: twisting functor.
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Bruhat filtration

An element of J;(/(,\)) is regarded as a on G/P with values
in some vector bundle.
Put

li = {x € Jy(I(o,))) | suppx C | J Now;P/P}
J<i

Then 0=/l Ch C--- Cl = Jy(I(o,\)): Bruhat filtration.
W,-wal N No ~ Now;P/P C W,-wal ~ w;NP/P C G/P:
NoWJP/Pﬂ W,NP/P: 0 for j < i.
= /,'//,'_1 — {X S T(W,'Nwiil) | supp x C W,'NWF1 N No}
= U(Ad(w;)n Ng) @c 7 (w;Nw; ! N Np)

where 7 means tempered distribution with values in (¢ ® (A + p))’.
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Bruhat filtration (2)

Lemma

Ad(w;)n Nng acts U(Ad(w;)in N1g) @c 7 (w;Nw; * N No) locally ni/potent.J

Hence 71| ad(w;)nnno 7 0 = 1i/li—1 = 0 (a part of the theorem).
From now on, we assume that 7|ad(w;)nn, = 0
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Bruhat filtration

Bruhat filtration (3)

Lemma

{x € UAd(w;)n Ng) ®c T(wiNw; N No) | 3k, (Kern)*x = 0}
= U(Ad(w;)n Ng) @c P(w;Nw; * N No)n™t @ J;/-_ln(a ® (A + p)).

‘P is the polynomial ring.

W,'NWI-_I N No ~ Now;P/P
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Bruhat filtration

Bruhat filtration (4)

We have [;/l;_1 — -
U(Ad(w;)n N7g) @c P(wiNw; ' N No)n™ @ ‘/;/.—177(0 Q@A+ p)) = 1.

Lemma

This map is surjective. J

The proof is based on the meromorphic continuation.
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meromorphic continuation

For f € P(w;Nw; 1 N Np), v’ € J! —1(o® (A + p)), we define the
distribution &(f, u') on w;NP/P by

N R O M TR

W,'NWFIQNO

for o: w;NP/P — o @ (A + p), supp ¢: compact.
To(f,u) = T led.

Lemma
© If )\ is sufficiently large then the above integral absolutely converges
for ¢ € I(o, \) and defines the distribution with holomorphic
parameter.

@ O(f, u') has a meromorphic continuation for \ € a*.

This lemma is well-known.

Noriyuki Abe (The University of Tokyo) Generalization of Jacquet modules August 21, 2007 15 / 28



proof of the surjectivity

Lemma

x €1, u € I; C Jp(I(o, A + tp)) with holomorphic parameter t defined
near t = 0 such that ug = x on W,'NP/P.

Proof.
Induction on i. Fix x € [.
Ju; € I; with meromorphic parameter t such that uj = x on w;NP/P.

! oo S)+S. H
U= 0 , u($)t5: Laurent series.

QO p=0=0K

Q@p>0=ulPel |
= 3u) € li_1 st uf = u(=P) on w;_{NP/P
= Replace v} to u; — t~Pu} then p+— p— 1.

O

v
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twisting functor

(Generalized) twisting functors

w e W, {ei,...,e}: basis of Ad(w)ng Nng, e: root vector w.r.t. .

Swa = (U(@)[(er—n(e1)) 1/ U(8))@ue) @ u(e)(Ula)[(er—n(en)) ™1/ U(g))
For X: U(g)-module, put Ty (X) = Swy ®@u(g) wX.

Lemma

Two preserves the category O. J

Tw := Tw is defined by Arkhipov and called twisting functor.
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twisting functors (examples)

G: split, M(\): the Verma module with highest weight A — p.
M(X)*: dual of M(X) in the category O.

A: dominant <= (a, \) > 0 for all positive root a.

TeM = M (e: the unit element of W).

TwyM(A) = M(wo)* (wo: the longest element of W).
TwM(X) = M(w]) if —w is dominant

Ch T,,M(A) = Ch M(w) (Ch: the character).

If ChM =3, cw cv Ch M(vA) then

(=)' ChL'TyM = %" cppcv Ch M(wv ).
TwM(w™1)) is called the twisted Verma module.

e © 6 ¢ ¢
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/
module [/

module //

Lemma

I} 2 Tuyn(U(8) @ugp) I, 1, (0 ® (A + p)))-

/
Iiﬁ

U(Ad(w;)n N7g) @c P(wiNw; ' N No)n ™ @ Jr -1, (0 ® (A + )

Turn(U(8) @0y I, 1, (0 © (A + p))

!/

= SW,n ®U(Ad(w,-)p) W"wa_ln(a ® ()\ + p)))

= U(Ad(wi)n N 1) ®c Z (e1 — n(er)) UtV . (e — n(ey))~ kD)
ks€Z >0

St (0@ (A + )
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module I/-’

module /] (2)

e1,...,e: basis of Ad(w;)n Nng.

Xs W,'NWI-_I N No — C, exp(aie1) - --exp(ase) — as: polynomial
Define I} — Tw, »,(U(8) @up) J;/__ln(cr ® (A +p))) by
T (—D)R k) (DMKt @ u
— T ® (er —ner)) " ®+D) (e —n(e)) " * ) @ u.

This map gives isomorphism as a C-vector space (obvious!).

Lemma
This map is a ) }

The first theorem is proved.
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module J;(/(a, \))

S (V) =Ty(C(J(V))))-

suppn := {a: simple root | |y, # 0}.

@ suppn = : obvious.

Proposition J

@ suppn = {simple root} (non-degenerate): the result of Matumoto.

This proposition implies the second main theorem since I';) o C is exact.
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proof of the Proposition

Proof.

py, = m, © a, D n,: the complexification of the parabolic subgroup
corresponding to suppn and its Langlands decomposition.

no: U(m, Nng) — C: restriction of .

Ji(V) = lim(V/(Kern)*V)*

V//nkV: Harish-Chandra module of m,
~> We can apply Matumoto's result to V/n,’; V. O
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Whittaker vectors

V: g-module
Wh, (V) :={v € V| (Kern)v = 0} : (Whittaker vectors).
V: a finite-length representation of G.

Wh(V) = Wh, (V),
Wh;, (V) := Why, ((Vk-finite))-
«—— Whittaker models
To determine Wh;,
@ determine Wh,,(/;/1i—1).
@ analyze 0 — Why,(/i—1) — Wh,(/;) = Wh,(/;/li—1) (exact).
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non-degenerate case (well-known)

Assume suppn = {simple root}.
o Whre:
if i # r (i.e., w; is not maximal) then /;/l;_1 =0
= Jy(I(,A)) = Twn(U(g) @up) J,, -1, (0 @ (A +p)).
= dimWhy°(/(0, A)) = dim Jév,*ln(a ® (A + p)).
e Why:
By the result of Kostan-Lynch, V — Wh,(C(V)) (V € O) is
= dimWh;(/(o, A)) is determined by
Ch J* (1o, A)) = 32, Ch(h/ 1)
= We can determine dim Wh,,(J;(/(a, \))).
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Application

generic case

Everything become easy if an infinitesimal character is far from integral.
© The exact sequence 0 — li_1 — l; — I;/l;—1 — 0 splits.
O All the Whittaker vectors of Ty, ,(U(g) ®y(p) J‘:V_,ln(o ® (A + p)) or

C(C(Tw,(U(g) @upy J* (0 @ (A +p))))) “come from”
J\;/,-_ln(a ® (A +p)) or J;,_—ln(g ® (A +p)).-
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generic case: Wh,*

o uc I,-’ = I;/l;_1. The integral defining u is holomorphic at \.
= This gives the lift of u on /.
= The exact sequence 0 — l;_1 — I; — I;/l;_1 — 0 splits.

*] Whn(/i/li—l) = Whn\mnmno(Ho(“nv /,'//,'_1)).
By the a,-weight and the Harish-Chandra isomorphism, we can
deduce the problem to determine dim Wh,,(/;//;—1) to the subalgebra
m,, i.e., the non-degenerate case.
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: _ .
generic case: Wh,

o {/;}: the filtration of J*(I(o,\)) = J'(I(a, N)).
=01 —li— l/l, 1 — 0: splits (by the theory of category O)
0—>I/ 1—>I —>//I 1 — 0: splits

@ determining Wh,(/ /l, 1): We can use the same method as in the
case of Whye.
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dimension of the Whittaker vectors

Theorem
If X is generic then

o

dimWh:*(I(o,A)) = > dim Wh*(o).
WEW(M)’ nlew_lr‘]N():l
(2]
dimWhr(I(o,\)) = > dimWh? ., (o).
weW (M)

When ¢ is finite-dimensional, this is Oshima’s results.
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