On a generalization of Jacquet modules of degenerate principal series representations

Noriyuki Abe

The University of Tokyo

August 21, 2007

Jacquet modules

- $G = KA_0N_0$: a semisimple Lie group and its Iwasawa decomposition.
- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a}_0 \oplus \mathfrak{n}_0$: the complexification of the Lie algebra of $G = KA_0N_0$.
- V: a Harish-Chandra module (Fréchet representation).
- V': the continuous dual of V.
- $(V_{K\text{-finite}})^* = \mathsf{Hom}_{\mathbb{C}}(V_{K\text{-finite}}, \mathbb{C}).$

We define the following two modules:

$$J'(V) = \{ v \in V' \mid \exists k, \ \mathfrak{n}_0^k v = 0 \},$$

$$J^*(V) = \{ v \in (V_{K\text{-finite}})^* \mid \exists k, \ \mathfrak{n}_0^k v = 0 \}.$$

Notice that $J'(V) = J^*(V)$ (Casselman-Wallach). This is called the Jacquet module.

Generalized Jacquet modules

- $G = KA_0N_0$: a semisimple Lie group and its Iwasawa decomposition.
- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a}_0 \oplus \mathfrak{n}_0$: the complexification of the Lie algebra of $G = KA_0N_0$.
- V: a Harish-Chandra module (Fréchet representation).
- V': the continuous dual of V.
- $(V_{K\text{-finite}})^* = \mathsf{Hom}_{\mathbb{C}}(V_{K\text{-finite}}, \mathbb{C}).$
- η : a character of N_0

We define the following two modules:

$$\begin{split} J'_{\eta}(V) &= \{ v \in V' \mid \exists k, \ (\text{Ker} \, \eta)^k v = 0 \}, \\ J^*_{\eta}(V) &= \{ v \in (V_{K\text{-finite}})^* \mid \exists k, \ (\text{Ker} \, \eta)^k v = 0 \}. \end{split}$$

where $\eta: U(\mathfrak{n}_0) \to \mathbb{C}$ (\mathbb{C} -algebra homomorphism).

"to know $H^0(\mathfrak{n}_0, (V_{K-\text{finite}})^*)$ "

 $H^0(\mathfrak{n}_0, (V_{\kappa \text{ finite}})^*) = H^0(\mathfrak{n}_0, J^*(V)).$

Motivations

$$\begin{split} \mathsf{Hom}_{\mathfrak{g},K}(V_{K\text{-finite}},\mathsf{Ind}_{N_0}^{\mathcal{G}}(1_{N_0})) &= \mathsf{Hom}_{\mathfrak{n}_0}(V_{K\text{-finite}},1_{N_0}) \\ &= \{v \in (V_{K\text{-finite}})^* \mid \mathfrak{n}_0 v = 0\} \\ &= \mathit{H}^0(\mathfrak{n}_0,(V_{K\text{-finite}})^*). \end{split}$$

```
\iff "to know \operatorname{Hom}_{\mathfrak{g},K}(V_{K\text{-finite}},\operatorname{Ind}_{N_0}^G(1_{N_0}))" \iff "to know homomorphisms to the principal series representations" However V\mapsto H^0(\mathfrak{n}_0,(V_{K\text{-finite}})^*) is NOT exact. \Rightarrow V\mapsto J^*(V): exact.
```

Whittaker models

"Generalization"

- $J^* \rightsquigarrow J_{\eta}^*$
- $\bullet \ \{v \in (V_{K\text{-finite}})^* \mid \mathfrak{n}_0 v = 0\} \rightsquigarrow \{v \in (V_{K\text{-finite}})^* \mid (\mathsf{Ker} \, \eta) v = 0\}$
- $\mathsf{Hom}_{\mathfrak{g},K}(V_{K\text{-finite}},\mathsf{Ind}_{N_0}^G(1_{N_0})) \leadsto \mathsf{Hom}_{\mathfrak{g},K}(V_{K\text{-finite}},\mathsf{Ind}_{N_0}^G(\eta)).$
- "homomorphisms to the principal series representations" \leadsto "homomorphisms to $\operatorname{Ind}_{N_0}^G \eta$ " : Whittaker model.
- J'_n corresponds to the moderate growth homomorphism.

degenerate principal series representations

- P = MAN: a parabolic subgroup of G and its Langlands decomposition.
- $\mathfrak{p} = \mathfrak{m} \oplus \mathfrak{a} \oplus \mathfrak{n}$: the complexification of the Lie algebra of P = MAN.
- σ : a finite-length representation of M (Fréchet representation).
- $\lambda \in \mathfrak{a}^* = (\text{Lie}(A)_{\mathbb{C}})^*$: a one-dimensional representation of A.
- $\rho(H) = (\operatorname{Tr}\operatorname{ad}(H)|_{\mathfrak{n}})/2$ for $H \in \mathfrak{a}$: one dimensional representation of A.

Put

$$I(\sigma,\lambda) = C^{\infty} \operatorname{-Ind}_{P}^{G}(\sigma \otimes (\lambda + \rho))$$

In this talk we consider $J'_n(I(\sigma,\lambda))$ and $J^*_n(I(\sigma,\lambda))$.

Example: $G = SL(2, \mathbb{R})$

 $G = SL(2,\mathbb{R})$, K = SO(2), $P = P_0$: minimal parabolic $\eta = 0$: trivial representation.

• λ : not integral or $\lambda/2$ is integral. $\Rightarrow I(1,\lambda)$ and $I(1,-\lambda)$ are irreducible and $I(1,\lambda) \simeq I(1,-\lambda)$. $\Rightarrow \dim \operatorname{Hom}(I(1,\lambda),I(1,\lambda)) = 1$ $\dim \operatorname{Hom}(I(1,\lambda),I(1,-\lambda)) = 1$ $\Rightarrow \dim H^0(\mathfrak{n}_0,(I(1,\lambda)_{K-\operatorname{finite}})^*) = 2$.

Example: $G = SL(2, \mathbb{R})$

• λ : integral, $\lambda/2$ is not integral, λ is dominant.

Example: $G = SL(2, \mathbb{R})$

• λ : integral, $\lambda/2$ is not integral, λ is anti-dominant.

Main Theorem

- *W*: the little Weyl group of *G*.
- $W(M) = \{ w \in W \mid w(\text{positive roots of } M) \subset \text{positive roots of } G \}.$
- $W(M) = \{w_1, \dots, w_r\}$ such that $\bigcup_{i < j} N_0 w_i P / P \subset G / P$ is a closed subset.

Theorem

If η is not unitary then $J'_{\eta}(I(\sigma,\lambda))=0$.

Assume that η is unitary. There exists a filtration $\{I_i\}$ of $J'_{\eta}(I(\sigma,\lambda))$ such that

- $\text{ If } I_i/I_{i-1} \neq 0 \text{ then } I_i/I_{i-1} \simeq T_{w_i,\eta}(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} J'_{w^{-1}\eta}(\sigma \otimes (\lambda + \rho))).$

where $T_{w_i,\eta}$ is the twisting functor (precise explanation will be appeared).

Main Theorem (2)

 $V: U(\mathfrak{g})$ -module.

- $C(V) = ((V^*)_{\mathfrak{h}\text{-finite}})^*$ (\mathfrak{h} : Cartan subalgebra) If $V = \bigoplus_{\nu \in \mathfrak{h}^*} V_{\nu}$ (\mathfrak{h} -weight decomposition) then $C(V) = \prod_{\nu \in \mathfrak{h}^*} V_{\nu}$.
- $\Gamma_{\eta}(V) = \{ v \in V \mid \exists k, \; (\text{Ker } \eta)^k v = 0 \}. \; (J'_{\eta}(V) = \Gamma_{\eta}(V'), J^*_{\eta}(V) = \Gamma_{\eta}((V_{K\text{-finite}})^*).$

Theorem

There exists a filtration $\{\widetilde{I}_i\}$ of $J^*_{\eta}(I(\sigma,\lambda))$ such that $\widetilde{I}_i/\widetilde{I_{i-1}} \simeq \Gamma_{\eta}(C(T_{w_i}(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} J^*(\sigma \otimes (\lambda + \rho))))).$

where $T_{w_i} = T_{w_i,0}$: twisting functor.

Bruhat filtration

An element of $J'_{\eta}(I(\sigma,\lambda))$ is regarded as a distribution on G/P with values in some vector bundle.

Put

$$I_i = \{x \in J'_{\eta}(I(\sigma,\lambda)) \mid \operatorname{supp} x \subset \bigcup_{j \leq i} N_0 w_j P/P\}$$

Then $0 = I_0 \subset I_1 \subset \cdots \subset I_r = J'_{\eta}(I(\sigma,\lambda))$: Bruhat filtration. $w_i \overline{N} w_i^{-1} \cap N_0 \simeq N_0 w_i P/P \subset w_i \overline{N} w_i^{-1} \simeq w_i \overline{N} P/P \subset G/P$: open subset $N_0 w_j P/P \cap w_i \overline{N} P/P = \emptyset$ for j < i.

$$\Rightarrow I_i/I_{i-1} \hookrightarrow \{x \in \mathcal{T}(w_i \overline{N} w_i^{-1}) \mid \operatorname{supp} x \subset w_i \overline{N} w_i^{-1} \cap N_0\}$$

$$= U(\operatorname{Ad}(w_i) \overline{\mathfrak{n}} \cap \overline{\mathfrak{n}_0}) \otimes_{\mathbb{C}} \mathcal{T}(w_i \overline{N} w_i^{-1} \cap N_0)$$

where \mathcal{T} means tempered distribution with values in $(\sigma \otimes (\lambda + \rho))'$.

Bruhat filtration (2)

Lemma

 $\operatorname{Ad}(w_i)\mathfrak{n}\cap\mathfrak{n}_0$ acts $U(\operatorname{Ad}(w_i)\overline{\mathfrak{n}}\cap\overline{\mathfrak{n}_0})\otimes_{\mathbb{C}}\mathcal{T}(w_i\overline{N}w_i^{-1}\cap N_0)$ locally nilpotent.

Hence $\eta|_{\mathrm{Ad}(w_i)\mathfrak{n}\cap\mathfrak{n}_0}\neq 0\Rightarrow I_i/I_{i-1}=0$ (a part of the theorem). From now on, we assume that $\eta|_{\mathrm{Ad}(w_i)\mathfrak{n}\cap\mathfrak{n}_0}=0$.

Bruhat filtration (3)

Lemma

$$\begin{split} \{x \in \textit{U}(\mathsf{Ad}(\textit{w}_i)\overline{\mathfrak{n}} \cap \overline{\mathfrak{n}_0}) \otimes_{\mathbb{C}} \mathcal{T}(\textit{w}_i\overline{\textit{N}}\textit{w}_i^{-1} \cap \textit{N}_0) \mid \exists \textit{k}, \; (\mathsf{Ker}\, \eta)^{\textit{k}} x = 0\} \\ &= \textit{U}(\mathsf{Ad}(\textit{w}_i)\overline{\mathfrak{n}} \cap \overline{\mathfrak{n}_0}) \otimes_{\mathbb{C}} \mathcal{P}(\textit{w}_i\overline{\textit{N}}\textit{w}_i^{-1} \cap \textit{N}_0) \eta^{-1} \otimes \textit{J}'_{\textit{w}_i^{-1}\eta}(\sigma \otimes (\lambda + \rho)). \end{split}$$

 ${\cal P}$ is the polynomial ring.

Bruhat filtration (4)

We have
$$I_i/I_{i-1} \hookrightarrow U(\operatorname{Ad}(w_i)\overline{\mathfrak{n}} \cap \overline{\mathfrak{n}_0}) \otimes_{\mathbb{C}} \mathcal{P}(w_i \overline{N} w_i^{-1} \cap N_0) \eta^{-1} \otimes J'_{w_i^{-1}\eta}(\sigma \otimes (\lambda + \rho)) =: I'_i.$$

Lemma

This map is surjective.

The proof is based on the meromorphic continuation.

meromorphic continuation

For $f \in \mathcal{P}(w_i \overline{N} w_i^{-1} \cap N_0)$, $u' \in J'_{w_i^{-1}}(\sigma \otimes (\lambda + \rho))$, we define the distribution $\delta(f, u')$ on $w_i \overline{N} P/P$ by

$$\langle \delta(f, u'), \varphi \rangle = \int_{w_i \overline{N} w_i^{-1} \cap N_0} f(n) u'(\varphi(nw_i)) \eta(n)^{-1} dn$$

for $\varphi \colon w_i \overline{N}P/P \to \sigma \otimes (\lambda + \rho)$, supp $\varphi \colon$ compact. $T\delta(f, u') \leftrightarrow T \otimes f\eta^{-1} \otimes u'$.

Lemma

- If λ is sufficiently large then the above integral absolutely converges for $\varphi \in I(\sigma, \lambda)$ and defines the distribution with holomorphic parameter.
- **2** $\delta(f, u')$ has a meromorphic continuation for $\lambda \in \mathfrak{a}^*$.

This lemma is well-known.

proof of the surjectivity

Lemma

 $x \in I'_i$, $\exists u_t \in I_i \subset J'_{\eta}(I(\sigma, \lambda + t\rho))$ with holomorphic parameter t defined near t = 0 such that $u_0 = x$ on $w_i \overline{N}P/P$.

Proof.

Induction on *i*. Fix $x \in I'_i$.

 $\exists u_t' \in I_i$ with meromorphic parameter t such that $u_0' = x$ on $w_i \overline{N}P/P$. $u_t' = \sum_{s=-n}^{\infty} u^{(s)} t^s$: Laurent series.

- ② $p > 0 \Rightarrow u^{(-p)} \in I'_{i-1}$ $\Rightarrow \exists u''_t \in I_{i-1} \text{ s.t. } u''_0 = u^{(-p)} \text{ on } w_{i-1} \overline{N}P/P$ $\Rightarrow \text{Replace } u'_t \text{ to } u'_t - t^{-p}u''_t \text{ then } p \mapsto p-1.$

(Generalized) twisting functors

 $w \in W$, $\{e_1, \ldots, e_l\}$: basis of $Ad(w)\overline{\mathfrak{n}_0} \cap \mathfrak{n}_0$, e_i : root vector w.r.t. \mathfrak{h} .

$$S_{w,\eta} = (U(\mathfrak{g})[(e_1 - \eta(e_1))^{-1}]/U(\mathfrak{g})) \otimes_{U(\mathfrak{g})} \cdots \otimes_{U(\mathfrak{g})} (U(\mathfrak{g})[(e_l - \eta(e_l))^{-1}]/U(\mathfrak{g}))$$

For
$$X$$
: $U(\mathfrak{g})$ -module, put $T_{w,\eta}(X) = S_{w,\eta} \otimes_{U(\mathfrak{g})} wX$.

Lemma

 $T_{w,0}$ preserves the category \mathcal{O} .

 $T_w := T_{w,0}$ is defined by Arkhipov and called twisting functor.

twisting functors (examples)

G: split, $M(\lambda)$: the Verma module with highest weight $\lambda - \rho$.

 $M(\lambda)^*$: dual of $M(\lambda)$ in the category \mathcal{O} .

 λ : dominant $\iff \langle \alpha, \lambda \rangle \geq 0$ for all positive root α .

- $T_eM = M$ (e: the unit element of W).
- $T_{w_0}M(\lambda)=M(w_0\lambda)^*$ (w_0 : the longest element of W).
- $T_w M(\lambda) = M(w\lambda)$ if $-w\lambda$ is dominant
- Ch $T_w M(\lambda) = \text{Ch } M(w\lambda)$ (Ch: the character).
- If $Ch M = \sum_{v \in W} c_v Ch M(v\lambda)$ then $\sum_i (-1)^i Ch L^i T_w M = \sum_{v \in M} c_v Ch M(wv\lambda)$.

 $T_w M(w^{-1}\lambda)$ is called the twisted Verma module.

module I_i'

Lemma

$$I_i' \simeq T_{w_i,\eta}(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} J_{w^{-1}\eta}'(\sigma \otimes (\lambda + \rho))).$$

$$I_i' \simeq U(\operatorname{Ad}(w_i)\overline{\mathfrak{n}} \cap \overline{\mathfrak{n}_0}) \otimes_{\mathbb{C}} \mathcal{P}(w_i \overline{N} w_i^{-1} \cap N_0) \eta^{-1} \otimes J_{w_i^{-1} \eta}' (\sigma \otimes (\lambda + \rho))$$

$$T_{w_{i},\eta}(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} J'_{w_{i}^{-1}\eta}(\sigma \otimes (\lambda + \rho)))$$

$$= S_{w,\eta} \otimes_{U(Ad(w_{i})\mathfrak{p})} w_{i} J'_{w_{i}^{-1}\eta}(\sigma \otimes (\lambda + \rho)))$$

$$=U(\mathsf{Ad}(w_i)\overline{\mathfrak{n}}\cap\overline{\mathfrak{n}_0})\otimes_{\mathbb{C}}\left(\sum_{k_{\mathfrak{s}}\in\mathbb{Z}_{\geq 0}}(e_1-\eta(e_1))^{-(k_1+1)}\dots(e_l-\eta(e_l))^{-(k_l+1)}
ight) \ \otimes_{\mathbb{C}}J'_{w_i^{-1}\eta}(\sigma\otimes(\lambda+
ho)))$$

$$\otimes_{\mathbb{C}} J'_{w_i^{-1}\eta}(\sigma\otimes(\lambda+\rho)))$$

module $I_i'(2)$

 e_1, \ldots, e_l : basis of $\operatorname{Ad}(w_i)\overline{\mathfrak{n}} \cap \mathfrak{n}_0$. $x_s \colon w_i \overline{N} w_i^{-1} \cap N_0 \to \mathbb{C}$, $\exp(a_1 e_1) \cdots \exp(a_l e_l) \mapsto a_s$: polynomial Define $I'_i \to T_{w_i,\eta}(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} J'_{w_i^{-1}\eta}(\sigma \otimes (\lambda + \rho)))$ by

$$T \otimes ((-1)^{k_1} k_1! x_1^{k_1}) \dots ((-1)^{k_l} k_l! x_l^{k_l}) \eta^{-1} \otimes u$$

$$\mapsto T \otimes (e_1 - \eta(e_1))^{-(k_1+1)} \dots (e_l - \eta(e_l))^{-(k_l+1)} \otimes u.$$

This map gives isomorphism as a \mathbb{C} -vector space (obvious!).

Lemma

This map is a $U(\mathfrak{g})$ -module homomorphism.

The first theorem is proved.

module
$$J_{\eta}^*(I(\sigma,\lambda))$$

Proposition

$$J_{\eta}^*(V) = \Gamma_{\eta}(C(J^*(V))).$$

 $\operatorname{supp} \eta := \{\alpha \colon \operatorname{simple root} \mid \eta |_{\mathfrak{q}_{\alpha}} \neq 0\}.$

- supp $\eta = \emptyset$: obvious.
- supp $\eta = \{\text{simple root}\}\ (\text{non-degenerate})$: the result of Matumoto.

This proposition implies the second main theorem since $\Gamma_n \circ C$ is exact.

proof of the Proposition

Proof.

 $\mathfrak{p}_{\eta}=\mathfrak{m}_{\eta}\oplus\mathfrak{a}_{\eta}\oplus\mathfrak{n}_{\eta}$: the complexification of the parabolic subgroup corresponding to supp η and its Langlands decomposition.

 $\eta_0 \colon \mathit{U}(\mathfrak{m}_\eta \cap \mathfrak{n}_0) \to \mathbb{C}$: restriction of η .

$$J_{\eta}^*(V) = \varinjlim_{k} (V/(\operatorname{Ker} \eta)^k V)^*$$

= $\varinjlim_{k,l} ((V/\mathfrak{n}_{\eta}^k V)/(\operatorname{Ker} \eta_0)^l (V/\mathfrak{n}_{\eta}^k V))^*.$

 $V/\mathfrak{n}_{\eta}^k V$: Harish-Chandra module of \mathfrak{m}_{η}

 \rightsquigarrow We can apply Matumoto's result to $V/\mathfrak{n}_n^k V$.

Whittaker vectors

V: \mathfrak{g} -module

$$\mathsf{Wh}_\eta(V) := \{ v \in V \mid (\mathsf{Ker}\,\eta)v = 0 \} : (\mathsf{Whittaker}\ \mathsf{vectors}).$$

V: a finite-length representation of G.

$$\mathsf{Wh}^\infty_\eta(V) := \mathsf{Wh}_\eta(V'), \ \mathsf{Wh}^*_\eta(V) := \mathsf{Wh}_\eta((V_{\mathit{K-finite}})^*).$$

←→ Whittaker models

To determine $Wh_{\eta}^{\blacktriangle}$,

- **1** determine $Wh_{\eta}(I_i/I_{i-1})$.
- $lackbox{2}$ analyze $0 o \mathsf{Wh}_\eta(I_{i-1}) o \mathsf{Wh}_\eta(I_i) o \mathsf{Wh}_\eta(I_i/I_{i-1})$ (exact).

non-degenerate case (well-known)

Assume supp $\eta = \{\text{simple root}\}.$

• Wh^∞_η : if $i \neq r$ (i.e., w_i is not maximal) then $I_i/I_{i-1} = 0$ $\Rightarrow J'_\eta(I(\sigma,\lambda)) = T_{w_r,\eta}(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} J'_{w_r^{-1}\eta}(\sigma \otimes (\lambda + \rho)).$ $\Rightarrow \dim \mathsf{Wh}^\infty_\eta(I(\sigma,\lambda)) = \dim J'_{w_r^{-1}\eta}(\sigma \otimes (\lambda + \rho)).$

• Wh_{η}^* :

By the result of Kostan-Lynch, $V \mapsto Wh_n(C(V))$ ($V \in \mathcal{O}$) is exact.

$$\Rightarrow$$
 dim Wh _{η} ^{*}($I(\sigma, \lambda)$) is determined by Ch $J^*(I(\sigma, \lambda)) = \sum_i \text{Ch}(I_i/I_{i-1})$

 \Rightarrow We can determine dim Wh $_{\eta}(J_{\eta}^*(I(\sigma,\lambda)))$.

generic case

Everything become easy if an infinitesimal character is far from integral.

- **1** The exact sequence $0 \to I_{i-1} \to I_i \to I_i/I_{i-1} \to 0$ splits.
- ② All the Whittaker vectors of $T_{w_i,\eta}(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} J'_{w_i^{-1}\eta}(\sigma \otimes (\lambda + \rho))$ or $\Gamma_{\eta}(C(T_{w_i}(U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} J^*(\sigma \otimes (\lambda + \rho)))))$ "come from" $J'_{w_i^{-1}\eta}(\sigma \otimes (\lambda + \rho))$ or $J^*_{w_i^{-1}\eta}(\sigma \otimes (\lambda + \rho))$.

generic case: Wh^∞_η

- $u \in I_i' = I_i/I_{i-1}$. The integral defining u is holomorphic at λ . \Rightarrow This gives the lift of u on I_i . \Rightarrow The exact sequence $0 \to I_{i-1} \to I_i \to I_i/I_{i-1} \to 0$ splits.
- $\operatorname{Wh}_{\eta}(I_i/I_{i-1}) = \operatorname{Wh}_{\eta|_{\mathfrak{m}_{\eta} \cap \mathfrak{n}_0}}(H^0(\mathfrak{n}_{\eta},I_i/I_{i-1})).$ By the \mathfrak{a}_{η} -weight and the Harish-Chandra isomorphism, we can deduce the problem to determine $\dim \operatorname{Wh}_{\eta}(I_i/I_{i-1})$ to the subalgebra \mathfrak{m}_{η} , i.e., the non-degenerate case.

generic case: Wh_{η}^*

- $\{I_i\}$: the filtration of $J^*(I(\sigma,\lambda)) = J'(I(\sigma,\lambda))$. $\Rightarrow 0 \to I_{i-1} \to I_i \to I_i/I_{i-1} \to 0$: splits (by the theory of category \mathcal{O}) $\Rightarrow 0 \to I_{I-1} \to \widetilde{I_i} \to \widetilde{I_i}/\widetilde{I_{i-1}} \to 0$: splits
- determining $Wh_{\eta}(\widetilde{I_i}/\widetilde{I_{i-1}})$: We can use the same method as in the case of Wh_n^{∞} .

dimension of the Whittaker vectors

Theorem

If λ is generic then

1

$$\dim \mathsf{Wh}^\infty_\eta(I(\sigma,\lambda)) = \sum_{w \in W(M), \ \eta|_{w\mathsf{Nw}^{-1} \cap \mathsf{No}} = 1} \dim \mathsf{Wh}^\infty_\eta(\sigma).$$

2

$$\dim \operatorname{Wh}_{\eta}^*(I(\sigma,\lambda)) = \sum_{w \in W(M)} \dim \operatorname{Wh}_{w^{-1}\eta}^*(\sigma).$$

When σ is finite-dimensional, this is Oshima's results.