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Introduction

HC = 'HC(G) : the categoty of Harish-Chandra modules
HCsp = HCsp(G) : the categoty of Harish-Chandra modules that are generated
by single-petaled K-types

(HCsp is not an Abelian category nor an exact category!),
FD = FD(H) : the categoty of finite-dimensional H-modules,

HC ) Hcsp
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Real reductive Lie group

G = KAN : a real reductive group in the Harish-Chandra class,

gr : Lie algebra of G,

g =t+ a+n: complexified Lie algebras,

6 : involution such that K = GY,

B(-,-) : nondegenerate, invariant, symmetric bilinear form such that —B(-, 0-) is
positive definite on gg,

Y, = 3(g,a) : system of restricted roots,

M = Zg(A),

W =W(G,A) = Ng(A)/M : Weyl group,

g=a+m+ ) .5 0o : root space decomposition,

¥t : positive roots cooresponding to n,

p =752 qex+(dimga)a € a*,



The Oth n-homology
For a (g, K)-module ¢, its 0th n-homology is by definition

H()(Il, @) = @/ﬂ@,
which is an (m + a, M )-module. There is a natural map

Y — H()(I‘l, @)M

Example. For V & K :

H, (u, Ul(g) @u (e V (U g) Quey V / nU(g) Qu e V)M
— (Ut a)@eV /UGt @)V

— (U 1) ¢ V)

®c VM.

Theorem (Casselman, Osborne). 0 < dim Hy(n, %) < oo for % (# 0) € HC.

3



Graded Hecke algebra

IT : simple roots.

For each indivisible root o € X\ 2%, put

m, := dim g, + 2dim go,.

The graded Hecke algebra H for (a,II, m,) is a unique C-algebra satisfying
(i) as a linear space H = S(a) @ CW,
(ii) S(a) = S(a) ®1, CW = 1 ® CW are subalgebras,

(iii) €84 = Sa - Sa() —mya(f) for £ € aand a €1l
where s, € W is the reflection in a.



Generalized Harish-Chandra homomorphisms

Suppose V' € K. Then VM is naturally a W-module.

The generalized H-C homomorphism ~y : U(g) Ruey V — H&cw VM is the
composition of the natural map

(%) U(g) v V — Ho(n,U(g) ®uwy V)"

and the following isomorphisms

Y

Ho(n, U(g) @y V)" ~ S(a)@ VM S(a) @ VM

— p-shift for the left factor

~ S(a) @ CWocw VY ~ Hocw VM.

We often consider vy is just the map () and the latter part merely defines the
canonical H-module structure for Hy(n, U(g) Ru(e) V)M.



If V = C (the trivial K-type) then

U(g) —=U(g)/U(g)t

l Yc

U(g) ) C ——H ¢y CM

H ®cw C—— S(a)

reduces to the classical Harish-Chandra homomorphism for G/K

v U(g) — (ﬂU(g) + U(g){%) & U(a) Eo—j% U(a) — S(a) — p-shift

S(a).

So we have the isomorphism

Homg (C,U(g) ®p ey C)== Homyy (CY, H@cw CV) 5 @ yco®@|em (= yco®).



Single-petaled K-types

For each o € ¥ fix a root vector X, € go Ngr so that —B(X,,0X,) = 2/|al?
and put Z, = v—1(X, +0X,).

Definition. We call a K-type V & K is single-petaled if

VM £ {0} and Z,(Z2 - 4)VM ={0} (Va € X).

The collection of single-petaled K-types is denoted by IA(Sp.

Example.

(i) The trivial K-type C is single-petaled.

Each K-type appearing in s := g~

is single-petaled.
(ii) For a complex GG, Broer’s smallness < to be single-petaled.

(iii) For a split GG, Barbasch’s petiteness = to be single-petaled.



Key lemma

Lemma 1. Suppose F,V € [?Sp. If U € Homg (E, U(g) @u e V) then the

linear map

EM o B Y U(g) @ue VY Heew VY
is a W-homomorphism. Namely, this correspondence defines a map
I’g : Hom g (E, U(g) @u (e V) — Homyy (EM, H Qcw VM).

Remark.

(i) The natural identification H @cw VM ~ S(a) ® VM does not commute
with W-actions.

(ii) In general, I'f is neither injective nor surjective. But if at least F or V is

trivial then I'Z is an isomorphism.
Vv p



Functors in this talk

HCsp = HCsp(G) : the categoty of Harish-Chandra modules that are generated
by K-types in [?Sp
(HCsp is not an Abelian category!),

FD = FD(H) : the categoty of finite-dimensional H-modules,

HC ) Hcsp
| :
Y =
FD



Definition of the functor =: 7D — HCy,
P := M AN (minimal parabolic).

Suppose (0, Z2") € FD(H).
~ o extends to a P-action by o(man) = e(°2%) ¢ End 2.

Indg 2 = {f g < 2 f(gman) = e_("+p)(1°g“)f(g)}.

For any V € IA{Sp, the Frobenius reciprocity gives an isomorphism
Hompg (V,Ind% 2°) &5 Home(VM, 27); @ — (v — @[v](e)).
w Vo Homy (VM 2) ¢ Vo Home(VM, 2)
~ V@ Homg (V,Ind% 27) C Ind% 2.
V-isotypic comp. of Ind§ 2
=(Z2") := the (g, K)-sub of IndIGD 2" spanned by V@ Homy, (VM, 27) (V € [A(Sp)
€ HCsp.

10



Hompg (V,Ind% 27) =5 Home (VM, 27) ; @ — evo ®|yu

where ev is the evaluation at e € G.
V& Homy (VM, 27) ¢ V@ Homg (V,Ind$ 27) ¢ Ind$ 2.
=(2°) := the (g, K)-sub of Ind% 2" spanned by V@ Homy (VM, 27) (V € I?Sp).

@Vef(s] U(g) Que) V& Homy, (VM 27) > =(Z) (g, K)-homo

D v ®id l O l ev
natural map
@Vef{sl H @cw VY © Homy (VM, 27) VA H-homo

The above is easily checked. Hence for any E € [?Sp, Lemma 1 implies
Homg (E, Dver UQ) Qup VE Hompy (VM, 27)) —— Homg (E,=(2))
Py ®idi O leVO.lEM
Homyy, (EM, EBVEI?SPH @cw VM @ Homy (VM, 27)) —— Homy (EM, 2)
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Correspondence of multiplicities

Theorem. For 2 € FD and FE € [A(Sp we have

Homg (E,Ind$ 2) — Homc(EM,2) ; ® — evod|pu

J |

Homg (F,2(2)) —— Homy (EM, 2)

In particular, [E : 2(27)] = dim Homy, (E™, 27).

Remark.
It is trivial that the image of Homg (F,=Z(.2")) contains Homyy, (EM, .2) since its
preimage is a part of generators of Z(2).

The point is the image stays in Homy, (E™, 27) after taking a U(g)-span of

generators.

12



Correspondence of parabolic inductions
For © C II define
Po := MgAgNe = GoNg : standard parabolic,
Hg := S(a)  CWeo C H with Wg := (so; a € O),
Zo: FDHeg) — HC(Go) : = for (Ge,He).

Definition. FEach 2o € FD(Hg) (co-)induces an H-module
Indg, 2o := {f € Homc(H, 26); f(he') = hof(:) for (he € Heo)},

on which H acts from the right.
Theorem. For 2o € FD(Hg) there is a (g, K)-homo

Bae

= ( Indt_ %@) . dS_ . (E@(%@) X (C) ‘

induction in H induction in G

K

such that for any V' € [A(Sp it induces

Hom (V, = ( IndH_ %@)) ~, Homp (V, mdS,_ . (E@(%@) X <c) ‘K) |
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Definition of the functor Y : HC — FD

For a given % € HC consider the following commutative diagram:

Dver, U9 Que) V @ Homg (V, %) Y

|

M
HO (11, @VGI?SPU(Q) ®U<{g) V& HomK(V, @)) — H()(tl, @)M
‘ A

/

D ®id

/

M
@VEI?SPHO (II, U(g) ®U(E) V) 0% HOHIK(V, @) ) /
\ -

b
~

—

@Vef{spH Qcw VM @ Homg (V, %) <« H-module

Y(%) = @yeg, Hoow VM @ Homg (V, ) / H Kerw € FD

(Note dimY (%) < dim Hy(n, )M < o0.)
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Relation between Y and =

Theorem. Y : HC., — FD is the left adjoint functor of =Z:FD — HCgqp.

d

Namely, for any 2 € FD and % € HCsp

Homy (Y (%), 2') ~ Hom,y k) (#,2(2)).

HC ¥ Hcsp
\ /
Y =

FD
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Are they exact?

Proposition. For an exact sequence in FD

0— 21 — %25 — Z3 — 0,
the following are exact in HC (not HCsp!)

0— Z2(Z27) — =(Z2>), =(Z3) — Z(Z3) — 0.

Proposition. For an exact sequence in HC

U — Y — Y3 — 0,
the following is exact in FD

Y (%) = V(%) — 0.
Moreover, if %) € HCgp, then the following is exact in FD

Y(#) — Y (%) — Y (%) — 0.
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Example 1 : spherical principal series
For A\ € a* put

P2 :=1Ind§; 4,n(CRC, K C Py == Indgy) Ca.

)i

Theorem.

If P2 has a cyclic K-fixed vector, namely if for any a € ¥1(= X\ X)
~XMaY) #£dim g, + 2dim gon, dim go + 2dim go, + 4, ...,
*
(*) dim g, + 2, dim g,, + 6, dim g, + 10, ...,

then
=(PY) =P, Y(P) =P

Corollary.
If M(a") # £(dim g, + 2dim go,,) for Va € X1, we can take w € W so that

=(Py) = P4,
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Example 2 : the case G = SL(2,R)
Identify A\ € a* with a complex number A(a").
(PL? =Ind{j4n(C4 RCARC)|,, P;" =Indj n(C_.HC\RC

{ DT = (limit of) discrete series (n =0,1,...),

)i

F,, = irreducible representation with dimension n =1,2,....
{ Pﬁ — Indls_*l(a) C)n C—p,triv; <C,o,sgn-

Theorem. (i). =: FD — HC is an exact functor. Y : HC — FD maps each
simple object to a simple object or 0.

(ii).

0 —— C,o,sgn . PI}I — C—p,triv — 0 0 — C—p,triv - Pﬁl Cp,sgn —(
= ( ( ( = ( (
— Y Y Y — ; 4 Y
0 —= D @ Dy — P! P 0 0—=F — P! —— DfeD; —= 0
(
v oo { v Y \2/ y {

1 . —
Cpsen © Cpsgn —> Py — Cpriv—=>=0 00— Cpriv — PH1 DC,sen — Cpsegn @ Cpsgn — 0
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iii). If n =3,5,7,... then Pf% ~ Pg" is simple while P+’>‘, P are not simple
H G G

Py ~ Pg" : simple

8
i
—

\
0 — DfeD, — PI" — F, — 0
) . , ) :
Yoo 0 v Yy

V v
0 —— P —= 0 (not exact) 0 0

0— F, =P, —Df®D;, —0

0 (exact)
(iv). If X is not an odd integer then Pg)‘ ~ Pg’_A and P§ ~ Pg” are simple and
=(Py) =Py, Y(PYY) =P

(v). Any constituent in P, *(A € C) has no relation with our functors. Namely,

such constituent never appears as a factor of 2(Z") for any 2, and if # C P, A
then Y (%) = 0.
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Final remarks

(i) In the definition of = and Y, we can replace I?Sp with any S C [?Sp.

(i)

(iii

0

N——"

Even then, all theorems and statements (excluding those for examples) are

still valid. (The correspondence of principlal series needs Ciyy € S. The
exactness of = for SL(2,R) needs S = () or IA(Sp.)

There is a notion of quasi-single-petaled K-types (— Aqsp D IA(Sp) and we
can easily generalize the definition of = for K¢, so that the exacteness

would be better. But I cannot find out the corresponding generalization of
Y.

Correspondence of Langlands classifications?

Relations with other similar functors by Arakawa-Suzuki, Etingof-,

Chiubotaru-Trapa, ...7
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