Functors connecting graded Hecke algebras and real reductive Lie groups

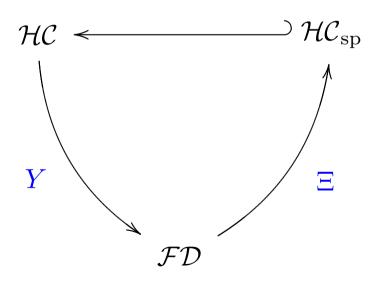
Hiroshi ODA (Takushoku Univ.)

March 10, 2009^a

^aSome mistakes are fixed after the talk.

Introduction

$$\begin{split} \mathcal{HC} &= \mathcal{HC}(G) \text{ : the categoty of Harish-Chandra modules} \\ \mathcal{HC}_{\mathrm{sp}} &= \mathcal{HC}_{\mathrm{sp}}(G) \text{ : the categoty of Harish-Chandra modules that are generated} \\ & \text{by single-petaled K-types} \\ & (\mathcal{HC}_{\mathrm{sp}} \text{ is not an Abelian category nor an exact category!}),} \\ \mathcal{FD} &= \mathcal{FD}(\mathbf{H}) \text{ : the categoty of finite-dimensional \mathbf{H}-modules,} \end{split}$$



Real reductive Lie group

```
G = KAN: a real reductive group in the Harish-Chandra class,
\mathfrak{g}_{\mathbb{R}}: Lie algebra of G,
\mathfrak{g} = \mathfrak{k} + \mathfrak{a} + \mathfrak{n}: complexified Lie algebras,
\theta: involution such that K = G^{\theta},
B(\cdot,\cdot): nondegenerate, invariant, symmetric bilinear form such that -B(\cdot,\theta\cdot) is
             positive definite on \mathfrak{g}_{\mathbb{R}},
\Sigma = \Sigma(\mathfrak{g}, \mathfrak{a}): system of restricted roots,
M := Z_K(A),
W = W(G, A) = N_K(A)/M: Weyl group,
\mathfrak{g} = \mathfrak{a} + \mathfrak{m} + \sum_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}: root space decomposition,
\Sigma^+: positive roots cooresponding to \mathfrak{n},
\rho := \frac{1}{2} \sum_{\alpha \in \Sigma^+} (\dim \mathfrak{g}_{\alpha}) \alpha \in \mathfrak{a}^*,
```

The 0th n-homology

For a (\mathfrak{g}, K) -module \mathscr{Y} , its 0th \mathfrak{n} -homology is by definition

$$H_0(\mathfrak{n}, \mathscr{Y}) := \mathscr{Y}/\mathfrak{n}\mathscr{Y},$$

which is an $(\mathfrak{m} + \mathfrak{a}, M)$ -module. There is a natural map

$$\mathscr{Y} \to H_0(\mathfrak{n}, \mathscr{Y})^M$$
.

Example. For $V \in \widehat{K}$,

$$H_{0}(\mathfrak{n}, U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} V)^{M} = \left(U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} V / \mathfrak{n} U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} V\right)^{M}$$

$$= \left(U(\mathfrak{n} + \mathfrak{a}) \otimes_{\mathbb{C}} V / \mathfrak{n} U(\mathfrak{n} + \mathfrak{a}) \otimes_{\mathbb{C}} V\right)^{M}$$

$$= \left(U(\mathfrak{a}) \otimes_{\mathbb{C}} V\right)^{M}$$

$$= S(\mathfrak{a}) \otimes_{\mathbb{C}} V^{M}.$$

Theorem (Casselman, Osborne). $0 < \dim H_0(\mathfrak{n}, \mathscr{Y}) < \infty \text{ for } \mathscr{Y}(\neq 0) \in \mathcal{HC}.$

Graded Hecke algebra

 Π : simple roots.

For each indivisible root $\alpha \in \Sigma \setminus 2\Sigma$, put

$$\mathbf{m}_{\alpha} := \dim \mathfrak{g}_{\alpha} + 2 \dim \mathfrak{g}_{2\alpha}.$$

The graded Hecke algebra \mathbf{H} for $(\mathfrak{a}, \Pi, \mathbf{m}_{\alpha})$ is a unique \mathbb{C} -algebra satisfying

- (i) as a linear space $\mathbf{H} = S(\mathfrak{a}) \otimes \mathbb{C}W$,
- (ii) $S(\mathfrak{a}) \xrightarrow{\sim} S(\mathfrak{a}) \otimes 1$, $\mathbb{C}W \xrightarrow{\sim} 1 \otimes \mathbb{C}W$ are subalgebras,
- (iii) $\xi \cdot s_{\alpha} = s_{\alpha} \cdot s_{\alpha}(\xi) \mathbf{m}_{\alpha} \alpha(\xi)$ for $\xi \in \mathfrak{a}$ and $\alpha \in \Pi$ where $s_{\alpha} \in W$ is the reflection in α .

Generalized Harish-Chandra homomorphisms

Suppose $V \in \widehat{K}$. Then V^M is naturally a W-module.

The generalized H-C homomorphism $\gamma_V: U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} V \to \mathbf{H} \otimes_{\mathbb{C}W} V^M$ is the composition of the natural map

$$(*) U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} V \longrightarrow H_0(\mathfrak{n}, U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} V)^M$$

and the following isomorphisms

$$H_0(\mathfrak{n}, U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} V)^M \simeq S(\mathfrak{a}) \otimes V^M \xrightarrow{\sim} S(\mathfrak{a}) \otimes V^M$$

$$\simeq S(\mathfrak{a}) \otimes \mathbb{C}W \otimes_{\mathbb{C}W} V^M \simeq \mathbf{H} \otimes_{\mathbb{C}W} V^M.$$

We often consider γ_V is just the map (*) and the latter part merely defines the canonical **H**-module structure for $H_0(\mathfrak{n}, U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} V)^M$.

If $V = \mathbb{C}$ (the trivial K-type) then

$$U(\mathfrak{g}) \longrightarrow U(\mathfrak{g})/U(\mathfrak{g})\mathfrak{k}$$

$$\cong \bigvee_{U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} \mathbb{C}} \xrightarrow{\gamma_{\mathbb{C}}} \mathbf{H} \otimes_{\mathbb{C}W} \mathbb{C}^{M}$$

$$\parallel$$

$$\mathbf{H} \otimes_{\mathbb{C}W} \mathbb{C} \xrightarrow{\simeq} S(\mathfrak{a})$$

reduces to the classical Harish-Chandra homomorphism for G/K

$$\gamma: U(\mathfrak{g}) = \left(\mathfrak{n}U(\mathfrak{g}) + U(\mathfrak{g})\mathfrak{k}\right) \oplus U(\mathfrak{a}) \xrightarrow{\operatorname{proj.}} U(\mathfrak{a}) = S(\mathfrak{a}) \xrightarrow{-\rho \operatorname{-shift}} S(\mathfrak{a}).$$

So we have the isomorphism

$$\operatorname{Hom}_{K}(\mathbb{C}, U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} \mathbb{C}) \xrightarrow{\sim} \operatorname{Hom}_{W}(\mathbb{C}^{M}, \mathbf{H} \otimes_{\mathbb{C}W} \mathbb{C}^{M}) ; \Phi \mapsto \gamma_{\mathbb{C}} \circ \Phi|_{\mathbb{C}^{M}} (= \gamma_{\mathbb{C}} \circ \Phi).$$

Single-petaled K-types

For each $\alpha \in \Sigma$ fix a root vector $X_{\alpha} \in \mathfrak{g}_{\alpha} \cap \mathfrak{g}_{\mathbb{R}}$ so that $-B(X_{\alpha}, \theta X_{\alpha}) = 2/|\alpha|^2$ and put $Z_{\alpha} = \sqrt{-1}(X_{\alpha} + \theta X_{\alpha})$.

<u>Definition.</u> We call a K-type $V \in \widehat{K}$ is single-petaled if

$$V^M \neq \{0\}$$
 and $Z_{\alpha}(Z_{\alpha}^2 - 4)V^M = \{0\} \ (\forall \alpha \in \Sigma).$

The collection of single-petaled K-types is denoted by \widehat{K}_{sp} .

Example.

- (i) The trivial K-type \mathbb{C} is single-petaled. Each K-type appearing in $\mathfrak{s} := \mathfrak{g}^{-\theta}$ is single-petaled.
- (ii) For a complex G, Broer's smallness \Leftrightarrow to be single-petaled.
- (iii) For a split G, Barbasch's petiteness \Rightarrow to be single-petaled.

Key lemma

<u>Lemma 1.</u> Suppose $E, V \in \widehat{K}_{sp}$. If $\Psi \in \operatorname{Hom}_K(E, U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} V)$ then the linear map

$$E^M \hookrightarrow E \xrightarrow{\Psi} U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} V \xrightarrow{\gamma_V} \mathbf{H} \otimes_{\mathbb{C}W} V^M$$

is a W-homomorphism. Namely, this correspondence defines a map

$$\Gamma_{V}^{E}: \operatorname{Hom}_{K}(E, U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} V) \to \operatorname{Hom}_{W}(E^{M}, \mathbf{H} \otimes_{\mathbb{C}W} V^{M}).$$

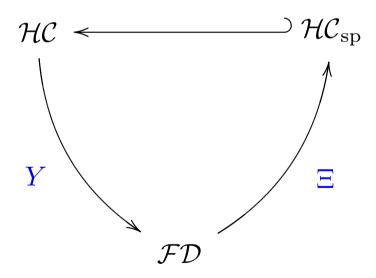
Remark.

- (i) The natural identification $\mathbf{H} \otimes_{\mathbb{C}W} V^M \simeq S(\mathfrak{a}) \otimes V^M$ does not commute with W-actions.
- (ii) In general, Γ_V^E is neither injective nor surjective. But if at least E or V is trivial then Γ_V^E is an isomorphism.

Functors in this talk

 $\mathcal{HC}_{\mathrm{sp}} = \mathcal{HC}_{\mathrm{sp}}(G)$: the category of Harish-Chandra modules that are generated by K-types in $\widehat{K}_{\mathrm{sp}}$ ($\mathcal{HC}_{\mathrm{sp}}$ is not an Abelian category!),

 $\mathcal{FD} = \mathcal{FD}(\mathbf{H})$: the category of finite-dimensional **H**-modules,



Definition of the functor $\Xi: \mathcal{FD} \to \mathcal{HC}_{\mathrm{sp}}$

P := MAN (minimal parabolic).

Suppose $(\sigma, \mathcal{X}) \in \mathcal{FD}(\mathbf{H})$.

 $\rightarrow \sigma$ extends to a *P*-action by $\sigma(man) = e^{\sigma(\log a)} \in \text{End } \mathscr{X}$.

$$\operatorname{Ind}_{P}^{G}\mathscr{X}:=\Big\{f:G\xrightarrow{C^{\infty}}\mathscr{X};\,f(gman)=e^{-(\sigma+\rho)(\log a)}f(g)\Big\}.$$

For any $V \in \widehat{K}_{sp}$, the Frobenius reciprocity gives an isomorphism

$$\operatorname{Hom}_K(V,\operatorname{Ind}_P^G\mathscr{X}) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{C}}(V^M,\mathscr{X}) ; \quad \Phi \mapsto (v \mapsto \Phi[v](e)).$$

$$V \otimes \operatorname{Hom}_{\mathbf{W}}(V^M, \mathscr{X}) \subset V \otimes \operatorname{Hom}_{\mathbb{C}}(V^M, \mathscr{X})$$

$$\simeq V \otimes \operatorname{Hom}_K(V, \operatorname{Ind}_P^G \mathscr{X}) \subset \operatorname{Ind}_P^G \mathscr{X}.$$

V-isotypic comp. of $\operatorname{Ind}_P^G \mathscr{X}$

$$\Xi(\mathscr{X}) := \text{the } (\mathfrak{g}, K)\text{-sub of } \operatorname{Ind}_P^G \mathscr{X} \text{ spanned by } V \otimes \operatorname{Hom}_{\mathbf{W}}(V^M, \mathscr{X}) \ (V \in \widehat{K}_{\operatorname{sp}})$$
 $\in \mathcal{HC}_{\operatorname{sp}}.$

 $\operatorname{Hom}_K(V,\operatorname{Ind}_P^G\mathscr{X}) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{C}}(V^M,\mathscr{X}) ; \quad \Phi \mapsto \operatorname{ev} \circ \Phi|_{V^M}$

where ev is the evaluation at $e \in G$.

 $V \otimes \operatorname{Hom}_W(V^M, \mathscr{X}) \subset V \otimes \operatorname{Hom}_K(V, \operatorname{Ind}_P^G \mathscr{X}) \subset \operatorname{Ind}_P^G \mathscr{X}.$

 $\Xi(\mathscr{X}) := \text{the } (\mathfrak{g}, K)\text{-sub of } \operatorname{Ind}_P^G \mathscr{X} \text{ spanned by } V \otimes \operatorname{Hom}_W(V^M, \mathscr{X}) \ (V \in \widehat{K}_{\operatorname{sp}}).$

$$\bigoplus_{V \in \widehat{K}_{\operatorname{s}_{\operatorname{I}}}} U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} V \otimes \operatorname{Hom}_{W}(V^{M}, \mathscr{X}) \longrightarrow \Xi(\mathscr{X}) \qquad (\mathfrak{g}, K)\text{-homo}$$

$$\bigoplus_{V \in \widehat{K}_{\operatorname{s}_{\operatorname{I}}}} \mathbf{H} \otimes_{\mathbb{C}W} V^{M} \otimes \operatorname{Hom}_{W}(V^{M}, \mathscr{X}) \xrightarrow{\operatorname{natural map}} \mathscr{X} \qquad \mathbf{H}\text{-homo}$$

The above is easily checked. Hence for any $E \in \widehat{K}_{sp}$, Lemma 1 implies

Correspondence of multiplicities

Theorem. For $\mathscr{X} \in \mathcal{FD}$ and $E \in \widehat{K}_{sp}$ we have

$$\operatorname{Hom}_{K}(E,\operatorname{Ind}_{P}^{G}\mathscr{X}) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_{\mathbb{C}}(E^{M},\mathscr{X}) \; ; \; \Phi \mapsto \operatorname{ev} \circ \Phi|_{E^{M}}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Hom}_{K}(E,\Xi(\mathscr{X})) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_{\mathbf{W}}(E^{M},\mathscr{X})$$

In particular, $[E : \Xi(\mathscr{X})] = \dim \operatorname{Hom}_{\mathbf{W}}(E^M, \mathscr{X}).$

Remark.

It is trivial that the image of $\operatorname{Hom}_K(E,\Xi(\mathscr{X}))$ contains $\operatorname{Hom}_W(E^M,\mathscr{X})$ since its preimage is a part of generators of $\Xi(\mathscr{X})$.

The point is the image stays in $\operatorname{Hom}_{W}(E^{M}, \mathscr{X})$ after taking a $U(\mathfrak{g})$ -span of generators.

Correspondence of parabolic inductions

For $\Theta \subset \Pi$ define

 $P_{\Theta} := M_{\Theta} A_{\Theta} N_{\Theta} = G_{\Theta} N_{\Theta}$: standard parabolic,

 $\mathbf{H}_{\Theta} := S(\mathfrak{a}) \otimes \mathbb{C}W_{\Theta} \subset \mathbf{H} \text{ with } W_{\Theta} := \langle s_{\alpha}; \alpha \in \Theta \rangle,$

 $\Xi_{\Theta}: \mathcal{FD}(\mathbf{H}_{\Theta}) \to \mathcal{HC}(G_{\Theta}): \Xi \text{ for } (G_{\Theta}, \mathbf{H}_{\Theta}).$

<u>Definition.</u> Each $\mathscr{X}_{\Theta} \in \mathcal{FD}(\mathbf{H}_{\Theta})$ (co-)induces an **H**-module

 $\operatorname{Ind}_{\mathbf{H}_{\Theta}}^{\mathbf{H}} \mathscr{X}_{\Theta} := \big\{ f \in \operatorname{Hom}_{\mathbb{C}}(\mathbf{H}, \mathscr{X}_{\Theta}) \, ; \, f(h_{\Theta} \cdot) = h_{\Theta} f(\cdot) \text{ for } (h_{\Theta} \in \mathbf{H}_{\Theta}) \big\},$

on which **H** acts from the right.

Theorem. For $\mathscr{X}_{\Theta} \in \mathcal{FD}(\mathbf{H}_{\Theta})$ there is a (\mathfrak{g}, K) -homo

$$\Xi\Big(\operatorname{Ind}_{\mathbf{H}_{\Theta}}^{\mathbf{H}}\mathscr{X}_{\Theta}\Big) \xrightarrow{\beta_{\mathscr{X}_{\Theta}}} \operatorname{Ind}_{G_{\Theta}N_{\Theta}}^{G}\Big(\Xi_{\Theta}(\mathscr{X}_{\Theta})\boxtimes\mathbb{C}\Big)\Big|_{K}$$
induction in \mathbf{H} induction in G

such that for any $V \in \widehat{K}_{sp}$ it induces

$$\operatorname{Hom}_{K}\left(V,\,\Xi\Big(\operatorname{Ind}_{\mathbf{H}_{\Theta}}^{\mathbf{H}}\,\mathscr{X}_{\Theta}\Big)\right)\stackrel{\sim}{\longrightarrow}\operatorname{Hom}_{K}\Big(V,\,\operatorname{Ind}_{G_{\Theta}N_{\Theta}}^{G}\Big(\Xi_{\Theta}(\mathscr{X}_{\Theta})\boxtimes\mathbb{C}\Big)\Big|_{K}\Big).$$

Definition of the functor $Y: \mathcal{HC} \to \mathcal{FD}$

For a given $\mathscr{Y} \in \mathcal{HC}$ consider the following commutative diagram:

$$\bigoplus_{V \in \widehat{K}_{\mathrm{sp}}} U(\mathfrak{g}) \otimes_{U(\mathfrak{k})} V \otimes \mathrm{Hom}_{K}(V, \mathscr{Y}) \longrightarrow \mathscr{Y}$$

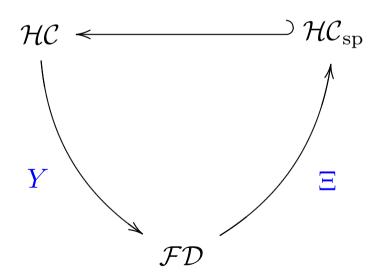
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Relation between Y and Ξ

Theorem. $Y: \mathcal{HC}_{\mathrm{sp}} \to \mathcal{FD}$ is the left adjoint functor of $\Xi: \mathcal{FD} \to \mathcal{HC}_{\mathrm{sp}}$.

Namely, for any $\mathscr{X} \in \mathcal{FD}$ and $\mathscr{Y} \in \mathcal{HC}_{\mathrm{sp}}$

$$\operatorname{Hom}_{\mathbf{H}}(Y(\mathscr{Y}),\mathscr{X}) \simeq \operatorname{Hom}_{(\mathfrak{g},K)}(\mathscr{Y},\Xi(\mathscr{X})).$$



Are they exact?

Proposition. For an exact sequence in \mathcal{FD}

$$0 \to \mathscr{X}_1 \to \mathscr{X}_2 \to \mathscr{X}_3 \to 0,$$

the following are exact in \mathcal{HC} (not \mathcal{HC}_{sp} !)

$$0 \to \Xi(\mathscr{X}_1) \to \Xi(\mathscr{X}_2), \qquad \Xi(\mathscr{X}_2) \to \Xi(\mathscr{X}_3) \to 0.$$

Proposition. For an exact sequence in \mathcal{HC}

$$\mathscr{Y}_1 \to \mathscr{Y}_2 \to \mathscr{Y}_3 \to 0,$$

the following is exact in \mathcal{FD}

$$Y(\mathscr{Y}_2) \to Y(\mathscr{Y}_3) \to 0.$$

Moreover, if $\mathscr{Y}_1 \in \mathcal{HC}_{sp}$ then the following is exact in \mathcal{FD}

$$Y(\mathscr{Y}_1) \to Y(\mathscr{Y}_2) \to Y(\mathscr{Y}_3) \to 0.$$

Example 1: spherical principal series

For $\lambda \in \mathfrak{a}^*$ put

$$P_G^{\lambda} := \operatorname{Ind}_{MAN}^G(\mathbb{C} \boxtimes \mathbb{C}_{\lambda} \boxtimes \mathbb{C}) \big|_K, \quad P_{\mathbf{H}}^{\lambda} := \operatorname{Ind}_{S(\mathfrak{a})}^{\mathbf{H}} \mathbb{C}_{\lambda}.$$

Theorem.

If P_G^{λ} has a cyclic K-fixed vector, namely if for any $\alpha \in \Sigma_1 (= \Sigma \setminus \Sigma)$

$$-\lambda(\alpha^{\vee}) \neq \dim \mathfrak{g}_{\alpha} + 2\dim \mathfrak{g}_{2\alpha}, \dim \mathfrak{g}_{\alpha} + 2\dim \mathfrak{g}_{2\alpha} + 4, \dots,$$

$$\dim \mathfrak{g}_{\alpha} + 2, \dim \mathfrak{g}_{\alpha} + 6, \dim \mathfrak{g}_{\alpha} + 10, \dots,$$

then

$$\Xi(P_{\mathbf{H}}^{\lambda}) = P_G^{\lambda}, \qquad Y(P_G^{\lambda}) = P_{\mathbf{H}}^{\lambda}.$$

Corollary.

If $\lambda(\alpha^{\vee}) \neq \pm (\dim \mathfrak{g}_{\alpha} + 2 \dim \mathfrak{g}_{2\alpha})$ for $\forall \alpha \in \Sigma_1$, we can take $w \in W$ so that $\Xi(P_{\mathbf{H}}^{\lambda}) = P_G^{w\lambda}$.

Example 2: the case $G = SL(2, \mathbb{R})$

Identify $\lambda \in \mathfrak{a}^*$ with a complex number $\lambda(\alpha^{\vee})$.

$$\begin{cases} P_G^{+,\lambda} = \operatorname{Ind}_{MAN}^G(\mathbb{C}_+ \boxtimes \mathbb{C}_\lambda \boxtimes \mathbb{C}) \big|_K, & P_G^{-,\lambda} = \operatorname{Ind}_{MAN}^G(\mathbb{C}_- \boxtimes \mathbb{C}_\lambda \boxtimes \mathbb{C}) \big|_K, \\ D_n^{\pm} = \text{ (limit of) discrete series } (n = 0, 1, \ldots), \\ F_n = \text{irreducible representation with dimension } n = 1, 2, \ldots \\ \begin{cases} P_H^{\lambda} = \operatorname{Ind}_{S(\mathfrak{a})}^H \mathbb{C}_{\lambda}, & \mathbb{C}_{-\rho, \operatorname{triv}}, & \mathbb{C}_{\rho, \operatorname{sgn}}. \end{cases} \end{cases}$$

Theorem. (i). $\Xi : \mathcal{FD} \to \mathcal{HC}$ is an exact functor. $Y : \mathcal{HC} \to \mathcal{FD}$ maps each simple object to a simple object or 0.

(ii).

$$0 \longrightarrow \mathbb{C}_{\rho,\operatorname{sgn}} \longrightarrow P_{\mathbf{H}}^{1} \longrightarrow \mathbb{C}_{-\rho,\operatorname{triv}} \to 0 \quad 0 \to \mathbb{C}_{-\rho,\operatorname{triv}} \longrightarrow P_{\mathbf{H}}^{-1} \longrightarrow \mathbb{C}_{\rho,\operatorname{sgn}} \longrightarrow 0$$

$$\stackrel{\Xi}{\to} \stackrel{?}{\vee} \qquad \stackrel{?}{\vee} \qquad \stackrel{?}{\vee} \qquad \stackrel{\Xi}{\to} \stackrel{?}{\vee} \qquad \stackrel{?}{$$

(iii). If $n = 3, 5, 7, \ldots$ then $P_{\mathbf{H}}^n \simeq P_{\mathbf{H}}^{-n}$ is simple while $P_G^{+,\lambda}$, $P_G^{+,-\lambda}$ are not simple.

$$P_{\mathbf{H}}^{n} \simeq P_{\mathbf{H}}^{-n} : \text{simple}$$

$$\Xi \qquad \stackrel{?}{\vee}$$

$$0 \longrightarrow D_{n}^{+} \oplus D_{n}^{-} \longrightarrow P_{G}^{+,n} \longrightarrow F_{n} \longrightarrow 0 \qquad 0 \longrightarrow F_{n} \longrightarrow P_{G}^{+,-n} \longrightarrow D_{n}^{+} \oplus D_{n}^{-} \longrightarrow 0$$

$$Y \qquad \stackrel{?}{\vee} \qquad \stackrel{?}$$

(iv). If λ is not an odd integer then $P_G^{+,\lambda} \simeq P_G^{+,-\lambda}$ and $P_H^{\lambda} \simeq P_H^{-\lambda}$ are simple and $\Xi(P_H^{\lambda}) = P_G^{+,\lambda}$, $Y(P_G^{+,\lambda}) = P_H^{\lambda}$.

(v). Any constituent in $P_G^{-,\lambda}(\lambda \in \mathbb{C})$ has no relation with our functors. Namely, such constituent never appears as a factor of $\Xi(\mathscr{X})$ for any \mathscr{X} , and if $\mathscr{Y} \subset P_G^{-,\lambda}$ then $Y(\mathscr{Y}) = 0$.

Final remarks

- (i) In the definition of Ξ and Y, we can replace \widehat{K}_{sp} with any $S \subset \widehat{K}_{sp}$. Even then, all theorems and statements (excluding those for examples) are still valid. (The correspondence of principlal series needs $\mathbb{C}_{triv} \in S$. The exactness of Ξ for $SL(2,\mathbb{R})$ needs $S = \emptyset$ or \widehat{K}_{sp} .)
- (ii) There is a notion of quasi-single-petaled K-types ($\rightarrow \widehat{K}_{qsp} \supset \widehat{K}_{sp}$) and we can easily generalize the definition of Ξ for \widehat{K}_{qsp} so that the exacteness would be better. But I cannot find out the corresponding generalization of Y.
- (iii) Correspondence of Langlands classifications?
- (iv) Relations with other similar functors by Arakawa-Suzuki, Etingof-, Chiubotaru-Trapa, . . . ?