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1 Main result

Let K = R or C. Let G = GL6(K) and S be its Ginzburg-Rallis
subgroup:

S =








a b d

0 a c

0 0 a


 | a ∈ GL2(K)





.

Define a character χS of S by

χS







1 b d

0 1 c

0 0 1


 ·




a 0 0

0 a 0

0 0 a





 = χK×(det(a)) ψK(tr(b + c)),

where ψK is a nontrivial unitary character of K, and χK× is any
character of K×.
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Theorem (uniqueness of Ginzburg-Rallis models)

Let V be an irreducible, admissible, smooth Fréchet representation
of G of moderate growth. Then we have

dimHomS(V,CχS
) ≤ 1.

Remark: smooth Fréchet representations of moderate growth =
(canonical) smooth globalization of Harish-Chandra modules, by
Casselman-Wallach.

Terminologies: Whittaker models, linear models, mixed models
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2 Reduction through Gelfand-Kazhdan

criterion

Denote by ∆ the Casimir element (with respect to real trace form),
viewed as a bi-invariant differential operator on G.

Theorem: Let f be a tempered generalized function on G, which
is an eigenvector of ∆. If f satisfies

f(sx) = f(xsτ ) = χS(s)f(x), for all s ∈ S,

then
f(x) = f(xτ ).



Uniqueness 5

'

&

$

%

3 Generalized functions and differential

operators

Let M be a smooth manifold.

• C−∞(M): the space of generalized functions on M .

• For a locally closed subset Z of M , denote

C−∞(M ; Z) = {f ∈ C−∞(U)| supp(f) ⊆ Z},
where U is any open subset containing Z as a closed subset.

• For a differential operator D on M , denote

C−∞(M ;D) = {f ∈ C−∞(M)| Df = 0}.

• Given Z and D, denote

C−∞(M ;Z; D) = C−∞(M ;Z) ∩ C−∞(M ;D).
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Suppose that a Lie group H acts smoothly on a manifold M .

• For a character χ of H, denote C−∞χ (M) the space of
χ-equivariant generalized functions.

• If a locally closed subset Z of M is H stable, denote by
C−∞χ (M ; Z) the space of all f in C−∞(M ; Z) which are
χ-equivariant.

• Similar notations: C−∞χ (M ; D); C−∞χ (M ; Z; D).

If M is a Nash manifold (those which is modeled locally by
semialgebraic sets in Rn), then one may define a notion of
temperedness.

• C−ξ(M): the space of tempered generalized functions on M .

• Similar notations such as C−ξ
χ (M ; Z; D).
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4 Generalized functions on G

We consider G as a G×G manifold:

(g1, g2)x = g1xgτ
2 .

• For the problem at hand, the relevant subgroup is H = S × S,
and the character of H is χ = χS £ χS .

• We need to show that every generalized function in
C−ξ

χ (G;∆− λ) is τ -invariant, for any λ.

• Following Bruhat, we decompose G into P -P τ double cosets:

G =
⊔

R

GR

where P is the parabolic subgroup of containing S, and try to
understand such generalized functions by imposing additional
support conditions with respect to double cosets.
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5 Three ingredients of the proof

(a) Reduction to an H stable open submanifold G′ of G consisting
of four double cosets, using the transversality of certain
vector fields to all GR’s outside G′. The technique is due to
Shalika.

(b) A descent argument from G′ to a smaller H stable open
submanifold G′′, such that the corresponding problem on G′′ is
reduced to the following linear model problems: the uniqueness
of trilinear models for GL2, and the multiplicity one property
for the pair (GL2, GL1). This argument relies on two geometric
notions attached to submanifolds.

(c) Use of the oscillator representation to conclude the uniqueness
of the two afore-mentioned linear models. The specific
phenomenon is called first occurrence.
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6 Reduction to G′ by transversality

Lemma: Let D1 be a differential operator on M of order k ≥ 1,
which is transversal to a submanifold Z of M . Let D2 be a
differential operator on M which is tangential to Z. Then

C−∞(M ; Z; D1 + D2) = 0.

Using “transversality” outside G′ and the above lemma, we have

Proposition: Let f ∈ C−∞χ (G). If f is an eigenvector of ∆, and f

vanishes on G′, then f = 0.

Remark: this step cuts off certain small submanifolds of G (those
which are outside G′).
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7 First occurrence

For Step (c), we appeal to the following

Lemma: Let E be a finite dimensional non-degenerate quadratic
space over K, and let the orthogonal group O(E) act on Ek

diagonally, where k is a positive integer. If k < dim E, and if a
tempered generalized function f on Ek is SO(E)-invariant, then f

is O(E)-invariant.

The above lemma may be stated as that the determinant character
of O(E) does not occur in Howe duality correspondence of
(O(E),Sp(2k)) if k < dim E. In fact the determinant character
occurs if and only if k ≥ dim E.
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8 Some geometric notions

Unipotent χ-incompatibility

Definition: An H stable submanifold Z of M is said to be
unipotently χ-incompatible if for every z0 ∈ Z, there is a local H

slice Z of Z, containing z0, and a smooth map φ : Z → H such that
the followings hold for all z ∈ Z:

(a) φ(z) ∈ Stabz,

(b) χ(φ(z)) 6= 1, and

(c) the linear map

Tz(M)/ Tz(Z) → Tz(M)/ Tz(Z)

induced by the action of φ(z) on M is unipotent.

Key Lemma: Let Z be an H stable submanifold of M which is
unipotently χ-incompatible. Then C−∞χ (M ; Z) = 0.
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Metrical properness

Let M is be a pseudo Riemannian manifold.

Definition:

(a) A submanifold Z of M is said to be metrically proper if for all
z ∈ Z, the tangent space Tz(Z) is contained in a proper
nondegenerate subspace of Tz(M).

(b) A second order differential operator D is said to be of
Laplacian type if for all x ∈ M , the principal symbol

σ2(D)(x) = u1v1 + u2v2 + · · ·+ umvm,

where u1, u2, · · · , um is a basis of the tangent space Tx(M),
and v1, v2, · · · , vm is the dual basis in Tx(M).
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Note that a Laplacian type differential operator is transversal to
any metrically proper submanifold, from its very definition.

Lemma: Let Z be a metrically proper submanifold of M , and let
D be a Laplacian type differential operator on M . Then

C−∞(M ; Z; D) = 0.

Remark: This is a form of uncertainty principle.
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Uχ M property

Let H be a Lie group acting smoothly on a pseudo Riemannian
manifold M , and let χ be a character on H.

Definition: We say that an H stable locally closed subset Z of M

has Uχ M property if there is a finite filtration

Z = Z0 ⊃ Z1 ⊃ · · · ⊃ Zk ⊃ Zk+1 = ∅

of Z by H stable closed subsets of Z such that each Zi \ Zi+1 is a
submanifold of M which is either unipotently χ-incompatible or
metrically proper in M .

Lemma: Let Z be an H stable closed subset of M having Uχ M
property. Then for any differential operator D of Laplacian type,
we have

C−∞χ (M ; Z; D) = 0.
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9 From G′ to G′′ by Uχ M

We shall define an H stable open submanifold G′′ of G′ which has
three submanifolds M2, M3, M̌3 as local H slices.

Set

M2 = GL2(K)×GL2(K) = GL2(K)×GL2(K)× {I2} ⊂ G,

which is stable under the subgroup

H2 = GL2(K) = {(x, x−τ ) | x ∈ GL∆
2 (K)} ⊂ H.
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Set

M3 =








∗ ∗ ∗ 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ x33 0 0 0

0 0 0 x44 0 0

0 0 0 0 1 0

0 0 0 0 0 1




∈ G | x33 6= x44





,

which is stable under a certain (non-reductive) subgroup H3 of H.

Also define a symmetric counterpart of M3, called M̌3.
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Let
G′′ = HM2 ∪HM3 ∪HM̌3 ⊂ G′.

Proposition: As an H manifold, G′ \G′′ has Uχ M property.
Consequently if f ∈ C−∞χ (G′) is an eigenvector of ∆, and f

vanishes on G′′, then f = 0.

What we need to do: determine G′ \G′′ explicitly and perform
orbit analysis painstakingly to show the Uχ M property (finding
slices and stabilizers to check unipotent χ-incompatibility; finding
tangent spaces to check metrical properness).
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10 The smaller models or the descents

Proposition: Let H2 = GL2(K) act on M2 = GL2(K)×GL2(K) by

g(x, y) = (gxg−1, gyg−1), g ∈ GL2(K),

Then any H2-invariant tempered generalized function on M2 is
τ -invariant, where

τ(x, y) = (xτ , yτ ).

Proof: Extend the action of H2 on M2 to the larger space
gl2(K)× gl2(K). It suffices to prove the same on gl2(K)× gl2(K),
and in fact on sl2(K)× sl2(K).

View sl2(K) as a three-dimensional quadratic space under the trace
form. The action of H2 yields the diagonal action of SO(sl2(K)) on
sl2(K)× sl2(K). By first occurrence lemma, any H2-invariant
tempered generalized function must be O(sl2(K))-invariant. ¤
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Remark: the above proposition gives the multiplicity one property
for the pair (GL2 ×GL2,∆GL2), or equivalently the uniqueness of
trilinear models for GL2.

Now for the H3 action on M3 (and similarly for M̌3):

• It amounts to uniqueness of certain mixed models for GL3.

• Further reduced to the multiplicity one property for the pair
(GL2,GL1), by using a form of Uχ M property.

• It also follows from first occurrence lemma, now applied to a
two-dimensional quadratic space.
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11 Final remarks

• Apart from the “ultimate” models, the descent process also
presents other intermediate models such as certain mixed
models for GL4 ×GL2.

• One can prove exactly the same result for G = GL3(D), where
D is the quaternion division algebra. This is the non-split case.

• One can give a quick proof of the uniqueness of Whittaker
models, by using the notion of unipotent χ-incompatibility.


