Uniqueness of certain mixed models: a new descent method *

> Chen-Bo Zhu Department of Mathematics National University of Singapore

> > March 9, 2009 Otsu City, Japan

*Joint work with Dihua Jiang and Binyong Sun

1 Main result

Let $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Let $G = GL_6(\mathbb{K})$ and S be its Ginzburg-Rallis subgroup:

$$S = \left\{ \begin{bmatrix} a & b & d \\ 0 & a & c \\ 0 & 0 & a \end{bmatrix} \mid a \in \operatorname{GL}_2(\mathbb{K}) \right\}.$$

Define a character χ_S of S by

$$\chi_{S}\left(\left[\begin{array}{rrrrr}1 & b & d\\ 0 & 1 & c\\ 0 & 0 & 1\end{array}\right] \cdot \left[\begin{array}{rrrr}a & 0 & 0\\ 0 & a & 0\\ 0 & 0 & a\end{array}\right]\right) = \chi_{\mathbb{K}^{\times}}(\det(a))\,\psi_{\mathbb{K}}(\operatorname{tr}(b+c)),$$

where $\psi_{\mathbb{K}}$ is a nontrivial unitary character of \mathbb{K} , and $\chi_{\mathbb{K}^{\times}}$ is any character of \mathbb{K}^{\times} .

Theorem (uniqueness of Ginzburg-Rallis models)

Let V be an irreducible, admissible, smooth Fréchet representation of G of moderate growth. Then we have

 $\dim \operatorname{Hom}_{S}(V, \mathbb{C}_{\chi_{S}}) \leq 1.$

Remark: smooth Fréchet representations of moderate growth = (canonical) smooth globalization of Harish-Chandra modules, by Casselman-Wallach.

Terminologies: Whittaker models, linear models, mixed models

2 Reduction through Gelfand-Kazhdan criterion

Denote by Δ the Casimir element (with respect to real trace form), viewed as a bi-invariant differential operator on G.

Theorem: Let f be a tempered generalized function on G, which is an eigenvector of Δ . If f satisfies

$$f(sx) = f(xs^{\tau}) = \chi_S(s)f(x), \text{ for all } s \in S,$$

then

$$f(x) = f(x^{\tau}).$$

3 Generalized functions and differential operators

Let M be a smooth manifold.

- $C^{-\infty}(M)$: the space of generalized functions on M.
- For a locally closed subset Z of M, denote

 $C^{-\infty}(M;Z) = \{ f \in C^{-\infty}(U) | \operatorname{supp}(f) \subseteq Z \},\$

where U is any open subset containing Z as a closed subset.

• For a differential operator D on M, denote

 $C^{-\infty}(M;D) = \{ f \in C^{-\infty}(M) | Df = 0 \}.$

• Given Z and D, denote

 $C^{-\infty}(M; Z; D) = C^{-\infty}(M; Z) \cap C^{-\infty}(M; D).$

Suppose that a Lie group H acts smoothly on a manifold M.

- For a character χ of H, denote $C_{\chi}^{-\infty}(M)$ the space of χ -equivariant generalized functions.
- If a locally closed subset Z of M is H stable, denote by $C_{\chi}^{-\infty}(M;Z)$ the space of all f in $C^{-\infty}(M;Z)$ which are χ -equivariant.
- Similar notations: $C_{\chi}^{-\infty}(M;D); C_{\chi}^{-\infty}(M;Z;D).$

If M is a Nash manifold (those which is modeled locally by semialgebraic sets in \mathbb{R}^n), then one may define a notion of **temperedness**.

- $C^{-\xi}(M)$: the space of tempered generalized functions on M.
- Similar notations such as $C_{\chi}^{-\xi}(M; Z; D)$.

4 Generalized functions on G

We consider G as a $G \times G$ manifold:

$$(g_1, g_2)x = g_1 x g_2^{\tau}.$$

- For the problem at hand, the relevant subgroup is $H = S \times S$, and the character of H is $\chi = \chi_S \boxtimes \chi_S$.
- We need to show that every generalized function in $C_{\chi}^{-\xi}(G; \Delta \lambda)$ is τ -invariant, for any λ .
- Following Bruhat, we decompose G into P- P^{τ} double cosets:

$$G = \bigsqcup_{R} G_{R}$$

where P is the parabolic subgroup of containing S, and try to understand such generalized functions by imposing additional support conditions with respect to double cosets.

5 Three ingredients of the proof

- (a) Reduction to an H stable open submanifold G' of G consisting of four double cosets, using the **transversality** of certain vector fields to all G_R 's outside G'. The technique is due to Shalika.
- (b) A descent argument from G' to a smaller H stable open submanifold G'', such that the corresponding problem on G'' is reduced to the following linear model problems: the uniqueness of trilinear models for GL_2 , and the multiplicity one property for the pair (GL_2 , GL_1). This argument relies on two geometric notions attached to submanifolds.
- (c) Use of the oscillator representation to conclude the uniqueness of the two afore-mentioned linear models. The specific phenomenon is called **first occurrence**.

6 Reduction to G' by transversality

Lemma: Let D_1 be a differential operator on M of order $k \ge 1$, which is transversal to a submanifold Z of M. Let D_2 be a differential operator on M which is tangential to Z. Then

 $C^{-\infty}(M; Z; D_1 + D_2) = 0.$

Using "transversality" outside G' and the above lemma, we have **Proposition**: Let $f \in C_{\chi}^{-\infty}(G)$. If f is an eigenvector of Δ , and fvanishes on G', then f = 0.

Remark: this step cuts off certain small submanifolds of G (those which are outside G').

7 First occurrence

For Step (c), we appeal to the following

Lemma: Let E be a finite dimensional non-degenerate quadratic space over \mathbb{K} , and let the orthogonal group O(E) act on E^k diagonally, where k is a positive integer. If $k < \dim E$, and if a **tempered** generalized function f on E^k is SO(E)-invariant, then fis O(E)-invariant.

The above lemma may be stated as that the determinant character of O(E) does not occur in Howe duality correspondence of (O(E), Sp(2k)) if $k < \dim E$. In fact the determinant character occurs if and only if $k \ge \dim E$.

8 Some geometric notions

Unipotent χ -incompatibility

Definition: An H stable submanifold Z of M is said to be unipotently χ -incompatible if for every $z_0 \in Z$, there is a local H slice \mathfrak{Z} of Z, containing z_0 , and a smooth map $\phi : \mathfrak{Z} \to H$ such that the followings hold for all $z \in \mathfrak{Z}$:

- (a) $\phi(z) \in \operatorname{Stab}_z$, (b) $\chi(\phi(z)) \neq 1$, and
- (c) the linear map

 $T_z(M)/T_z(Z) \to T_z(M)/T_z(Z)$

induced by the action of $\phi(z)$ on M is unipotent.

Key Lemma: Let Z be an H stable submanifold of M which is unipotently χ -incompatible. Then $C_{\chi}^{-\infty}(M; Z) = 0$.

Metrical properness

Let M is be a pseudo Riemannian manifold.

Definition:

- (a) A submanifold Z of M is said to be metrically proper if for all $z \in Z$, the tangent space $T_z(Z)$ is contained in a proper nondegenerate subspace of $T_z(M)$.
- (b) A second order differential operator D is said to be of Laplacian type if for all $x \in M$, the principal symbol

 $\sigma_2(D)(x) = u_1 v_1 + u_2 v_2 + \dots + u_m v_m,$

where u_1, u_2, \dots, u_m is a basis of the tangent space $T_x(M)$, and v_1, v_2, \dots, v_m is the dual basis in $T_x(M)$. Note that a Laplacian type differential operator is transversal to any metrically proper submanifold, from its very definition.

Lemma: Let Z be a metrically proper submanifold of M, and let D be a Laplacian type differential operator on M. Then

 $C^{-\infty}(M;Z;D) = 0.$

Remark: This is a form of uncertainty principle.

$U_{\chi} M$ property

Let H be a Lie group acting smoothly on a pseudo Riemannian manifold M, and let χ be a character on H.

Definition: We say that an H stable locally closed subset Z of M has U_{χ} M property if there is a finite filtration

$$Z = Z_0 \supset Z_1 \supset \cdots \supset Z_k \supset Z_{k+1} = \emptyset$$

of Z by H stable closed subsets of Z such that each $Z_i \setminus Z_{i+1}$ is a submanifold of M which is either unipotently χ -incompatible or metrically proper in M.

Lemma: Let Z be an H stable closed subset of M having U_{χ} M property. Then for any differential operator D of Laplacian type, we have

 $C^{-\infty}_{\chi}(M; Z; D) = 0.$

9 From G' to G'' by $U_{\chi}M$

We shall define an H stable open submanifold G'' of G' which has three submanifolds M_2, M_3, \check{M}_3 as local H slices.

Set

$$M_2 = \operatorname{GL}_2(\mathbb{K}) \times \operatorname{GL}_2(\mathbb{K}) = \operatorname{GL}_2(\mathbb{K}) \times \operatorname{GL}_2(\mathbb{K}) \times \{I_2\} \subset G,$$

which is stable under the subgroup

 $H_2 = \operatorname{GL}_2(\mathbb{K}) = \{ (x, x^{-\tau}) \mid x \in \operatorname{GL}_2^{\Delta}(\mathbb{K}) \} \subset H.$

Set
$$M_{3} = \left\{ \begin{bmatrix} * & * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 \\ * & * & x_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \in G \mid x_{33} \neq x_{44} \right\},$$

which is stable under a certain (non-reductive) subgroup H_3 of H. Also define a symmetric counterpart of M_3 , called \check{M}_3 .

Let

$$G'' = HM_2 \cup HM_3 \cup H\dot{M}_3 \subset G'.$$

Proposition: As an H manifold, $G' \setminus G''$ has U_{χ} M property. Consequently if $f \in C_{\chi}^{-\infty}(G')$ is an eigenvector of Δ , and f vanishes on G'', then f = 0.

What we need to do: determine $G' \setminus G''$ explicitly and perform orbit analysis painstakingly to show the U_{χ} M property (finding slices and stabilizers to check unipotent χ -incompatibility; finding tangent spaces to check metrical properness).

10 The smaller models or the descents

Proposition: Let $H_2 = \operatorname{GL}_2(\mathbb{K})$ act on $M_2 = \operatorname{GL}_2(\mathbb{K}) \times \operatorname{GL}_2(\mathbb{K})$ by

$$g(x,y) = (gxg^{-1}, gyg^{-1}), \quad g \in \mathrm{GL}_2(\mathbb{K}),$$

Then any H_2 -invariant tempered generalized function on M_2 is τ -invariant, where

$$\tau(x,y) = (x^{\tau}, y^{\tau}).$$

Proof: Extend the action of H_2 on M_2 to the larger space $\mathfrak{gl}_2(\mathbb{K}) \times \mathfrak{gl}_2(\mathbb{K})$. It suffices to prove the same on $\mathfrak{gl}_2(\mathbb{K}) \times \mathfrak{gl}_2(\mathbb{K})$, and in fact on $\mathfrak{sl}_2(\mathbb{K}) \times \mathfrak{sl}_2(\mathbb{K})$.

View $\mathfrak{sl}_2(\mathbb{K})$ as a three-dimensional quadratic space under the trace form. The action of H_2 yields the diagonal action of $\mathrm{SO}(\mathfrak{sl}_2(\mathbb{K}))$ on $\mathfrak{sl}_2(\mathbb{K}) \times \mathfrak{sl}_2(\mathbb{K})$. By first occurrence lemma, any H_2 -invariant tempered generalized function must be $\mathrm{O}(\mathfrak{sl}_2(\mathbb{K}))$ -invariant. \Box **Remark**: the above proposition gives the multiplicity one property for the pair $(GL_2 \times GL_2, \Delta GL_2)$, or equivalently the uniqueness of trilinear models for GL_2 .

Now for the H_3 action on M_3 (and similarly for M_3):

- It amounts to uniqueness of certain mixed models for GL_3 .
- Further reduced to the multiplicity one property for the pair (GL_2, GL_1) , by using a form of U_{χ} M property.
- It also follows from first occurrence lemma, now applied to a two-dimensional quadratic space.

11 Final remarks

- Apart from the "ultimate" models, the descent process also presents other intermediate models such as certain mixed models for $GL_4 \times GL_2$.
- One can prove exactly the same result for $G = GL_3(\mathbb{D})$, where \mathbb{D} is the quaternion division algebra. This is the non-split case.
- One can give a quick proof of the uniqueness of Whittaker models, by using the notion of unipotent χ -incompatibility.