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We study the isotropy representation attached to an irreducible Harish-Chandra
module with irreducible associated variety. It is shown that, under some assump-
tions, the dual of the isotropy representation in question can be characterized by
means of the principal symbol of a differential operators of gradient type. By using
this, the case of Harish-Chandra module of discrete series is more closely examined.

1. Introduction

Let g be a complex semisimple Lie algebra with a nontrivial involutive
automorphism 6 of g. We write g = £ @ p for the symmetric decomposition
of g given by 6, where ¥ and p denote the +1 and —1 eigenspaces for 0,
respectively. Let K¢ be a connected complex algebraic group with Lie
algebra €. We assume that the natural inclusion € — g gives rise to a
group homomorphism from K¢ to G(‘?:d through the exponential map. Here
G(‘?:d denotes the adjoint group of g. Then, this homomorphism naturally
induces the adjoint representation Ad of K¢ on g.

We say that a finitely generated g-module X is a (g, K¢)-module, or
a Harish-Chandra module, if the action on X of the Lie subalgebra ¢ is
locally finite and if it lifts up to a representation of K¢ on X through the
exponential map in such a way as (k-X-k™1)v = (Ad(k)X)v for X € g,
k € Kc and v € X. Tt is a fundamental result of Harish-Chandra that
the study of irreducible admissible representations of a real semisimple Lie
group essentially reduces to that of irreducible (g, K¢)-modules.

Let X be an irreducible (g, K¢)-module. A K¢-stable good filtration
of X naturally gives rise to a graded, compatible (S(g), K¢)-module gr X
annihilated by £, where S(g) denotes the symmetric algebra of g. By Borho-
Brylinski [1] and Vogan [22], [23], the associated cycle C(X) of X is defined
to be the support V(X)) of gr X combined with the multiplicity at each
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irreducible component of V(X). The support V(X)) is called the associated
variety of X. It is a Kc-stable affine algebraic cone contained in the set
of nilpotent elements in p, and each irreducible component of V(X)) is the
closure O of a nilpotent K¢-orbit O in p. As we have shown in [6] and [27],
the variety V(X)) controls some fundamental properties for X.

The algebraic cycle C(X) describes a sort of asymptotic behavior of
X (cf. [21]). Moreover, it is shown by Vogan [22, Theorem 2.13] that the
multiplicity of X at an irreducible component O of V(X)) can be interpreted
as the dimension of a certain finite-dimensional representation (we, W) of
the isotropy subgroup K¢ (X) of K¢ at an X € O. We call we an isotropy
representation attached to X. In terms of we, the associated cycle C(X)
of X is expressed as

C(X) =) dimwo - [0]. (1.1)
O

Now, we assume that the associated variety V(X)) of X is the closure
of a single nilpotent Kc-orbit O in p. This assumption does not exclude
important (g, Kc)-modules related to elliptic orbits. In reality, it is well-
known that the Harish-Chandra modules of discrete series (more generally
Zuckerman derived functor modules) and also the irreducible admissible
highest weight modules of hermitian Lie algebras satisfy this hypothesis.

The purpose of this paper is to study the associated cycle C(X) and in
particular the isotropy representation we attached to a (g, K¢)-module X
with irreducible associated variety, by developing our arguments in [30] for
unitary highest weight modules and also those in [29] for discrete series.

To do this, we first look at in Section 2 a relationship between
the (S(g),Kc)-module gr X and the induced representation T'(V}) =
Ind?“;(x)(wo, W) of K¢ equipped with a natural S(g)-action. This
amounts to a survey of some aspects of Vogan’s work ([22, Sections 2—4]
and [23, Lectures 6 and 7]) in a slightly modified and simplified form (but
for limited X’s). A reciprocity law of Frobenius type for such an induced
module (Proposition 2.2) plays an important role. In fact, it is effectively
used to prove an irreducibility criterion for weo (Theorem 2.1). Also, we
include a remarkable result (Theoren 2.2) on the isotropy representations
for singular unitary highest weight modules, given in [30], [33] and [24].

In order to identify the isotropy representation we, it is useful to con-
sider not only gr X but also its Kc-finite dual realized as a space of certain
(vector valued) polynomial functions on p. We present this idea in Section
3. A sufficient condition is given in Proposition 3.1 for gr X being annihi-
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lated by the whole prime ideal I of S(g) defining O. In such a case, the
isotropy representation, more precisely, its dual @, can be described by
means of the principal symbol of a differential operator on p of gradient
type (see Propositions 3.2 and 3.3).

In the last part of this paper, Section 4, we focus our attention on the
irreducible Harish-Chandra modules X of discrete series. As is well known,
the associated variety of such an X is irreducible (cf. [28], [29]). The mul-
tiplicities in the associated cycles for discrete series have been intensively
studied by Chang [2], [3], by means of the localization theory of Harish-
Chandra modules. He succeeds to describe C(X) explicitly for the real rank
one case. Taniguchi applies in [19] and [20] the results of Chang in order
to specify Whittaker functions associated with discrete series for SU(n, 1),
Spin(n,1) and SOq(2n,2). Here in this paper, we exploit another way to
identify C(X), by using a realization of X as the kernel of an invariant dif-
ferential operator of gradient type on the Riemannian symmetric space (cf.
[9], [18]; see also [26], [34]). Based on our results in Section 3 and also on
the discussion in [29], we can construct a certain K¢(X)-submodule U (Q.)
of the representation (w,, W*) contragredient to we. Moreover some evi-
dences are given for this subrepresentation being large enough in the whole
w. The gained results are summarized as Theorem 4.2 and Corollary 4.1.

This article is an updated and enlarged version of the informal reports
[31] and [32] appeared in RIMS Kokytroku.

2. Graded module gr X and induced representation I'(W)

As in Section 1, let X be an irreducible (g, K¢)-module with irreducible
associated variety V(X) = O, where O is a nilpotent Kc-orbit in p. For
later use, this section introduces some elementary aspects of Vogan’s theory
on the associated cycle and the isotropy representation attached to X. The
results in this section may be read off from [22] and [23] with some effort.
Nevertheless, we include the proofs for these important results in order to
make this paper more accessible.

2.1. Associated cycle and isotropy representation

First, we introduce our key notion precisely. Take an irreducible K¢-

submodule (7,V;) of X, which yields a K¢-stable good filtration of X
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in the following way:

X()CX1C"‘CXTLC"', with
X, =U,(g)V; (n=0,1,2,...).

) ) )

(2.1)

Here U(g) denotes the universal enveloping algebra of g, and we write U, (g)
(n =0,1,...) for the natural increasing filtration of U(g). This filtration
gives rise to a graded (S(g), K¢)-module M = gr X, annihilated by S(¢),

as follows:
M=gX=@M, with M,:=X,/X,1 (X_1:={0}). (22
n=0

We note that
M, =S"(g)V, =S"(p)V, and My, =1V, (2.3)

where S™(v) is the homogeneous component of the symmetric algebra S(v)
of degree n. By definition, the associated variety V(X) of X is identi-
fied with the affine algebraic variety of g given by the annihilator ideal
Anngg)M in S(g) of M:

V(X)={Ze€g| f(Z)=0forall fe Anngg M} Cp, (2.4)

where S(g) is viewed as the ring of polynomial functions on g by identifying
g with its dual space through the Killing form B of g.

Throughout this section, we assume that V(X)) is irreducible. The
Hilbert Nullstellensatz tells us that the radical of Anngg) M coincides
with the prime ideal I = I(V(X)) defining the irreducible variety V(X):
I= \/W. So we see I"M = {0} for some positive integer n, and
we write ng for the smallest n of this nature. Then, one gets a strictly
decreasing filtration of the (S(g), K¢)-module M as

M=I°MDI'M -2 I"M = {0}. (2.5)

By the multiplicity mult;(X) of X at I is meant the length as an S(g)-
module of the localization M; of M = gr X at the prime ideal I. Then,
the associated cycle C(X) of X turns to be

C(X) = mult;(X)-[0] with V(X)=0. (2.6)

Note that this cycle does not depend on the choice of a good filtration (2.1)
of X.
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Now, let us explain how the multiplicity mult;(X) can be interpreted as
the dimension of an isotropy representation. For this, we take an element
X in the open K¢-orbit O C V(X). Set

Ke(X) = {k € K¢| Ad(k)X = X},

the isotropy subgroup of K¢ at X. We write m(X) for the maximal ideal
of S(g) which defines the one point variety {X} in g:

m(X) =Y (Y = B(Y,X))S(g) for X € 0. (2.7)
Yeg
For each 7 =0,... ,n9—1, we introduce a finite-dimensional representation
wo(j) of (5(g), Kc(X)) acting on
W(j) :== P M/m(X)[’ M, (2.8)
in the canonical way, and we set
no—1
(@o, W) i= B (wol)), W(i))- (2.9)
j=0

We call we the isotropy representation attached to the data (X,V,, O),
where V, yields the filtration (2.1) of X. The following lemma (cf. [22,
Corollary 2.7]; see also [31, Remark 2.2]) is essential for our succeeding
discussion.

Lemma 2.1. Let N be a finitely generated (S(g), Kc)-module such that
IN = {0}. Then, the length of S(g)r-module Ny is equal to the dimension
of the vector space N/m(X)N for every X € O.

This lemma tells us that the length of the localized S(g);-module
(M /P M) equals dim we(j), by noting that the ideal I annihilates
the subquotient I7M/I?t1M of M. Together with the exactness of local-
ization, we immediately get the following

Proposition 2.1. One has mult;(X) = dim we. Moreover, the equality
mult;(X) = dim we(0) = dim M/m(X)M (2.10)

holds if and only if the support of the S(g)-module IM is contained in the
boundary 00 = O\O.

Remark 2.1. The representation we(0) in (2.10) never vanishes because
the annihilator ideal Anng(q)M/IM is equal to I (cf. [30, Lemma 3.4]).
Moreover, the equality (2.10) holds for a number of unitary (g, K¢)-modules
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X with unique extreme Kc-types V,. See Example 2.1 and Theorem 4.2

(1).

2.2. Induced module T'(2)

We consider a finite-dimensional (S(g), K¢ (X))-module (w, Z) with X €
O, where K¢(X) acts on Z holomorphically. Let T'(Z) denote the space of
all left K¢-finite, holomorphic functions f : K¢ — Z satisfying

fyh) =w(h)~ f(y) (y€ Kc, h € Ke(X)).

Namely, T'(Z) consists of all K¢-finite, holomorphic cross sections of the
Kc-homogeneous vector bundle K¢ x g (x) £ on K¢/Kc(X) ~ O. Then,
I'(Z) has a structure of (S(g), K¢)-module by the following actions:

(D f)(y) = w(Ad@y) ' D)f(y), (k- f)y) = f(k™"y),
for D € S(g), k € K¢ and f € T'(Z). We call T'(Z) the (S(g), Kc)-module

induced from w. We note that, if Z is annihilated by the maximal ideal
m(X), the S(g)-action on I'(Z) turns to be the multiplication of functions
on the orbit O:

(D - f)(y) = D(Ad(y) X) f(y)- (2.11)

In this case, the annihilator in S(g) of any nonzero function f € T'(Z)
coincides with the prime ideal I defining O.

Let M be any (S(g), Kc)-module. If p is a homomorphism from M to
Z as (S(g), Kc(X))-modules, we define a function T, : K¢ — Z for each
m € M by putting

Tou(y) :=p(y~'-m) (y€ Ke). (2.12)

Then it is standard to verify that T, lies in I'(£) and that the map T : m —
T, (m € M) gives an (S(g), K¢)-homomorphism from M to I'(Z). More
precisely, one readily obtains the following reciprocity law of Frobenius
type.

Proposition 2.2. Under the above notation, the assignment p — T sets
up a linear isomorphism

HomS(g),K‘g(X)(M,Z) ~ Homg(g)’KE(M,F(Z)). (2.13)
Here, for Q-modules A and B, we denote by Homq (A, B) the space of -

homomorphisms from A to B.
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2.3. Homomorphism T = ®;T(j)

We now return to our setting in Section 2.1, where M = gr X for an
irreducible (g, K¢)-module X with V(X) = O. Take an integer j such
that 0 < 5 < ng — 1. Let p(j) denote the natural quotient map from
"M to W(j) = PM/m(X)I’M. Correspondingly, we get an (S(g), Kc)-
homomorphism 7'(5) : I’ M — T(W(34)) by Proposition 2.2. It follows that

KerT(j) = (| m(Y)'M > P*' M, (2.14)
YeO

by the definition of T'(j) together with m(Y) D I (Y € O).

Proposition 2.3. KerT(j) is the largest (S(g), Kc)-submodule of I’ M
among those N having the following two properties: (i) N D "Y' M, and,
(ii) the support of N/I'Y1 M is contained in 00.

Proof. First, we show that KerT'(j) have two properties (i) and (ii). The
inclusion (2.14) assures (i). As for (ii), we consider a short exact sequence

of (S(g), K¢)-modules:
0 — KerT(j)/PT'M — PM/PY'M — PM/KerT(5) — 0. (2.15)

Each module is annihilated by I. In view of Lemma 2.1, we find that the
multiplicity of 17 M /Ker T(j) at I is equal to the dimension of vector space

(I M [Ker T(5)) /m(X) (I’ M /Ker T(5))
~ P M/(m(X)M +KerT(5)) = W(5). (2.16)

Here, the last equality follows from KerT(j) C m(X)I’M (see (2.14)).
This shows that the length of S(g);-module I?M/IP*'M and that of
I’ M/KerT(j) coincide with one another. Hence (KerT'(j)/I°*1M); van-
ishes by (2.15). This means that the support of KerT(5)/I?*1 M is con-
tained in 00.

Second, let N be any (S(g), K¢ )-submodule of I? M with two properties
(i) and (ii) in question. (2.14) tells us that T'(j) naturally induces an
(S(g), Kc)-module map from I? M /I7+1 M to T(W(j)) which we denote by
T(j). Then, T'(5)(N/I7+' M) must vanish by virtue of (2.11) together with
the property (ii) for N. This proves N C KerT'(j). O

As for the injectivity of T'(j), one gets the following consequence of
Proposition 2.3.
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Corollary 2.1. The homomorphism T(j) : M — T(W(j)) is injective
if and only if Annggym = I for allm € I"M\{0}. In this case, one has
DHIM = {0}, d.e., j=ng — 1.

Example 2.1. We encounter the situation in the above corollary with
7 = 0, for example, if X is a unitary highest weight module of a simple
hermitian Lie algebra g, and V in (2.1) is the extreme K¢-type of X. Note
that the associated variety of such an X is the closure of a “holomorphic”
nilpotent Kc-orbit in p. See [30, Section 3.2] for details.

Summing up T(j)’s on M/ M (j =0,... ,n9 — 1), we obtain an
(S(g), K¢)-homomorphism T := &,T(5):

M(I) =@ IM/PHM T @BTW) ~T(W), (2.17)

J J

where the support of the kernel Ker T is contained in 00.

Remark 2.2. By using the “microlocalization technique”, Vogan con-
structed a new Kc-stable Z-gradation on X such that the correspond-
ing graded module embeds into ['(W) as a representation of K¢ (see [22,
Theorem 4.2]). Thanks to this result, one always has X — T'(W) as Kc-
modules. Noting that M(I) ~ X as Kc-modules, we find that the above
T : M(I) — T'(W) must be an isomorphism if T is surjective.

2.4. Irreducibility of wo

The results in Sections 2.1-2.3 lead us to prove the following natural crite-
rion for the irreducibility of isotropy representation (wwp, W) of K¢(X) (cf.
[23, Proposition 7.6]; see also [31, Section 5]).

Theorem 2.1. The following two conditions on X are equivalent to each
other.

(a) (wo, W) is irreducible as a Kc(X)-module.

(b) If N is any (S(g), K¢)-submodule of M = gr X, either the support
of N or that of the quotient M /N is contained in 80.

In this case, we have wo = we(0), or equivalently, the support of IM
is contained in O by Proposition 2.1.

Proof. The implication (a) = (b) is an easy consequence of the exactness
of localization. In what follows let us prove (b) = (a). First, we note that
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the condition (b) together with Remark 2.1 implies that the support of IM
is contained in 8O. Thus one gets wp = we(0), or,

W = W(0) = M/m(X)M.

Now, suppose by contraries that W is not irreducible. Then, there exists
a K¢ (X)-stable subspace C' of M such that M 2 C 2 m(X)M and that
Z:= M/C is irreducible as a K¢(X)-module. The condition C D m(X )M
assures that C is S(g)-stable. Thus Z becomes an (S(g), K¢(X))-module
annihilated by m(X).

Next, we consider two induced (S(g), Kc)-modules T'(W) and T'(Z).
The quotient map W = M/m(X)M — Z = M/C gives rise to an
(S(g), Kc)-homomorphism, say «, from I'(WV) to I'(Z) in the canonical
way. Set T' := ~ o T(0), where T(0) : M — T(W) is the (S(g), Kc)-
homomorphism defined in Section 2.3. Then, as shown in the proof of [23,
Proposition 7.9], the image T"(M) of T” is a finitely generated (S(g), Kc¢)-
submodule of T'(Z) whose isotropy representation is isomorphic to Z. This
combined with T"(M) ~ M/KerT’ tells us that the multiplicity of Ker T"
at the prime ideal I is equal to dim W — dim Z > 0. By the assumption
(b), we find that the support of M/KerT' ~ T'(M) is contained in 80O.
This necessarily implies Ker 7" = M, i.e., T' = 0, because the S(g)-module
T'(M) (C I'(2)) admits no embedded associated primes by (2.11). Finally,
the resulting equality 7 = 0 means that

ytm4+m(X)M = T(0),.(y) € C/m(X)M

for all y € K¢ and m € M. This contradicts C' # M. O

2.5. Case of unitary highest weight representations

Let X be an irreducible unitary highest weight (g, K¢)-module of a simple
hermitian Lie algebra g, with extreme Kc-type V.

Example 2.2. In [30, Section 5], we have described the isotropy represen-
tation we = we(0) explicitly, when X is the theta lift of an irreducible rep-
resentation of the compact groups G' = O(k), U(k) and Sp(k) with respect
to the reductive dual pairs (G,G") = (Sp(n,R), O(k)), (SU(p,q),U(k)) and
(SO*(2n), Sp(k)), respectively. In particular, one finds that the represen-
tation we is irreducible if the dual pair (G, G’) is in the stable range with
smaller member G'. In this case, X < w}, essentially gives the Howe
duality correspondence ([10], [11], [8, Part II] etc.).
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An irreducible highest weight (g, K¢)-module X is called singular if the
Gelfand-Kirillov dimension dim V(X)) is strictly smaller than one half of
the dimension of the corresponding hermitian symmetric space. Recently,
we have described the isotropy representations by using the projection onto
the PRV-component (cf. Proposition 3.3), for all singular unitary highest
weight modules which can not be obtained by the Howe duality correspon-
dence. This work is in collaboration with Wachi (see [24] and [33] for
details). As a result, we establish the following remarkable theorem.

Theorem 2.2. The isotropy representation s irreducible and explicitly de-
scribed for every irreducible singular unitary highest weight representation
of a stmple Lie group of hermitian type.

The above result for DI and EVII gives a clear understanding of some
multiplicity formulae obtained by Kato and Ochiai ([13], [14]). For EVII
case, we get two distinguished series of isotropy representations which
decompose the quasi-regular representations for the compact symmetric
spaces S® ~ S0O(9)/50(8) and P*(Cay) ~ Fy(_s2)/Spin(9), respectively.
These decompositions can be related to tensor products of singular unitary
representations in [4], by using the generalized Whittaker vectors (cf. [30]).

3. Utility of the dual (S(g), K¢)-module

In this section, we do not assume a priori that the associated variety V(X)
of X is irreducible. Let M = gr X be, as in (2.2), the graded (S(g), Kc)-
module attached to an irreducible (g, K¢)-module X through the filtration
(2.1). For any nilpotent element X € p, we can define the maximal ideal
m(X) of S(g), the K¢(X)-module W(0) = M/m(X)M, and (S(g), K¢)-
homomorphism 7'(0) : M — T'(W(0)), just as in Section 2. Here T(WV(0)) =
Ind?i(x)(W(O)) is the (S(g), Kc)-module induced from W(0).

The purpose of this section is to make some simple observations concern-
ing the associated cycle of X, in connection with the K¢-finite dual M* of
M realized as a space of V*-valued polynomial functions on p. This is done
by developing our arguments in [29], [30] in full generality. A sufficient con-
dition is given in Proposition 3.1 for the annihilator Anng(g)M of M being
equal to the prime ideal of S(g) defined by the Kc¢-orbit O := Ad(K¢)X
through X. Furthermore, we characterize M* as the kernel of a differen-
tial operator D on p of gradient type (Proposition 3.2). Then the prin-
cipal symbol of D allows us to describe the K¢(X)-module W(0)* dual

to W(0) (Proposition 3.3). The observations made in this section will be
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used effectively in Section 4, in order to describe the associated cycles for
(g, K¢)-modules X of discrete series.

3.1. K¢-finite dual M* and its submodule ¥

First, the tensor product S(p)®V, admits a natural structure of (S(g), K¢)-
module so that ¢ annihilates the whole S(p) ® V:

D1 (D®’U) = D1D®’U (Dl € S(p)),
Dy - (D®wv):=0 (D € S5(8)), (3.1)
k-(D®v):=Adk)D ® kv (k€ Kc),
where D @ v € S(p) ® V, with D € S(p) and v € V... Since M = S(p)V,
with V, = My, there exists a unique surjective (S(g), K¢)-homomorphism
m:Sp)eV, — M

such that 7(1 ® v) = v for v € V.. We write N for the kernel of w. This is
a graded (S(g), Kc)-submodule of S(p) ® V.
On the other hand, we identify S(p*) ® V* canonically with the space

of polynomial functions on p with values in V), where U* denotes the dual

space of a vector space U. S(p*) ® V* also becomes an (S(g), K¢)-module
on which g acts by directional differentiation through the quotient map

g—g/t=p:

(D1 - £)(Y) := (0(D1)f)(Y) (D1 € S(p)),

(D - f)(Y):=0 (D € 5(¢)), (3-2)
(k- (V) :=k- f(Ad(k)~'Y) (k€ K¢),

for f € S(p*) @ V¥ and Y € p. Here D; — 9(D;) denotes the algebra

isomorphism from S(p) onto the algebra of constant coefficient differential
operators on p, defined by

) f(Y) := %f(y +tZ) =0 for Zep. (3.3)
Note that the action of S(g) on S(p*) ® V" is locally finite. The assignment
pdX+— X" ep* with X*(Y):=B(X,Y) (Y €p). (3.4)
gives a K¢-isomorphism from p onto p*.
Now it is standard to verify that
(S V:)x(SEHeV) 3Dy, f)— (Dav,f) eC,

(D@ v, f) = ("D - £)(0), ) e (35)
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gives a nondegenerate (S(g), Kc)-invariant pairing, where 7 denotes the
principal automorphism of S(p) such that 7Y = —Y for Y € p, and
(-, - )vexv, is the dual pairing on V¥ x V.. Let M* denote the Kc-finite
dual space of M, viewed as an (S(g), K¢)-module through the contragredi-
ent representation. We write N+ for the orthogonal of N in S(p*)®V* with
respect to (-, -). Then, (3.5) naturally induces a nondegenerate invariant
pairing

(-, - W:MxN*t=C, (3.6)
which gives an isomorphism of (S(g), K¢ )-modules:
M*~ N+t cSp)eV:. (3.7)

For an integer n > 0, we denote by (N1),, the homogeneous component of
N2t of degree n: (N1), := Nt n(S™(p*) @ V.*).

Let X be a nilpotent element in p. Noting that M =V, + m(X )M, we
have a natural K¢(X)-homomorphism

Vi — W(0) = M/m(X)M — 0.
This induces an embedding of W(0)* into V* as
W(O)* = (V,/(V, nm(X)M))* o V7, (38)

by passing to the dual. In this way, we regard WW(0)* as a K¢ (X )-submodule
of V*.

For each integer n > 0, let ¥,, be the K¢-submodule of S™(p*) @ V*
generated by the vectors (X*)" @ v* (v* € W(0)*):

U, = ((X")"®@v" | v" € W(0)") k.. (3.9)
Note that the V*-valued polynomial function (X*)™ ® v* on p is defined by
(X)"@v*:p>Z+— B(X,Z)"v* € C.

We set
v=PT, cSpHeV;.
n=0

Then, we can show the following

Lemma 3.1. (1) ¥ is an (S(g), K¢)-submodule of S(p*) ® V* contained
in N-t.
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(2) We write ~¥ for the orthogonal of U in M with respect to the
pairing (-, - )1 on M x Nt. Let T(0) : M — T'(W(0)) be the (S(g), Kc)-
homomorphism defined in Section 2.3. Then, one gets

KerT(0)N M, = * ¥ N M, for every integer n > 0, (3.10)
In particular, *¥ = @, ¥ N M, is contained in Ker T(0).

Proof. (1) It is easy to see that ¥ is (S(g), K¢)-stable by noting that
Y- ((Ad(y)X))" @y - v") = nB(Ad(y) X, V)((Ad(y) X)" )" @y - 0"

lies ¥,, 4 for Y € g, v* € W(0)* and y € K¢. To prove ¥ C N+, let 1,
denote the linear form on S(p) ® V., which is the pull back of v* € W(0)*
through the quotient map
S(p) @V, = M — W(0) = M/m(X)M.

Then 1, is zero on the subspace m(X)®V, + N C S(p) ® V..

Ifm=>3Y"®v; (Y; €p,v; €V;)is a homogeneous element of N of
degree n, it follows that

(M, (X*)"@v*) = (=1)"n!B(X, ;)" (v, 0"y, vy
J
= (=1)"nly- () =0,

by noting that Y* — B(X,Y;)" € m(X). Hence one gets ((Ad(y)X)*)"®y-
v* € y- Nt =Nt for all v* € W(0)*, y € K¢ and n > 0. Thus we obtain
(1).

(2) Let m = .Y - v; be an element of M, with Y; € p and v; € V.
Just as in the proof of (1), we see that m € +¥ if and only if

0=(m, ((Ad(y)X))" ©y-v"h

= Z(—l)"n!B(Yj,Ad(y)X)" (y! v, V)V, v
J

= (=1)"ni(T(0)m(y), " )w(0)xw(0)* >
for all v* € W(0)* and y € K¢. This means m € Ker T(0). O

3.2. A sufficient condition for I = Anngq) M

Let O = Ad(K¢)X be the nilpotent K¢-orbit through X. We write I
for the prime ideal of S(g) defining the Zariski closure O of O, and let
{D;| i =1,...,r} be a finite set of homogeneous elements of S(p) which
generates the ideal I. We set n(i) :=deg D; (1 <4 <r) and n(0) := 0.
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Proposition 3.1. Assume that ¥, = (NL)n(i) fori=0,...,r. Then
we have I = Anngq) M. Therefore, X has the irreducible associated variety
V(X) = O, and the corresponding associated cycle C(X) of X turns to be

C(X) = dim W(0) - [O].

Proof. We see for every v € V. that
T(0)piv(y) = (Di - T(0)s)(y) = Di(Ad(y)X) T(0)u(y) =0 (y € Kc),

since D; € I and Ad(y)X € O. It then follows that D;v = 0 by Lemma 3.1
(2) together with the assumption W, ;) = (Nl)n(i), which is equivalent to
J‘\IJﬂMn(i) = {0}. Hence, D, annihilates V, and so the whole M = S(p)V..
This shows I C Anngq) M.

Now, W(0)* cannot vanish by the assumption ¥y = (N+)y ~ V*. This
implies m(X) D Anngg)M. In reality, if m(X) 2 Anngg) M, one gets
S(g) = m(X) + Anng(g)M by the maximality of m(X). This yields

M = S(g)V, = m(X)V, c m(X)M, ie, W(0)={0}.
Hence we deduce

I= () m(Ad(k)X) D Anngg)M,
keKe

because Anng(g)M is stable under Ad(Kc).
Thus we find I = Anng(g)M and in particular V(X)) = O. The last

assertion follows immediately from Proposition 2.1. O

Under the assumption in Proposition 3.1, the (S(g), K¢)-module ¥ is
almost equal to N+ ~ M*, in the sense that the support of the orthogonal
+¥ C KerT(0) is contained in the boundary 80O by Proposition 2.3 and
Lemma 3.1.

3.3. Differential operator of gradient type

We wish to characterize N+ ~ M* as the kernel of a certain differential
operator on p of gradient type. For this, we first take an orthonormal
basis (Xi,...,X;) of p with respect to the Killing form Bj,.,. Then,
(X7, , XY) (cf. (3.4)) gives a basis of p*, dual to (Xy,...,X;). Fora
multi-index a = (v, ... , ;) of nonnegative integers a; (1 <17 < s), we set

D 1= X{t X0, (D) = ()™ (X2).

S
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Then, the elements D* (resp. (D*)*) with |a] = n form a basis of S™(p)
(resp. S™(p*)) for every integer n > 1, where || := a3 + - -+ + a5 denotes
the length of a. Note that
A(D*)(D*)? = a!-8, 5 (Kronecker’s 8, 5) and
B(D)(Z°)" = ni(D*)(2)
for all o, 8 of length n, and Z € p. Here, we set a! = ay!---a,!. Note that

the above functions 9(D*)(D*)? and d(D*)(Z*)™ are constant on p.
We now introduce a gradient map V™ of order n by

(VH) = Y (D) @AY, (312)

la]=n

(3.11)

for f € S(p*) ® V*. It is easy to observe that V" f is independent of
the choice of an orthonormal basis (X;)1<i<s. Furthermore, V" gives an
(S(g), K¢ )-homomorphism

S VI3 frs Ve S(p') e (S™(p') @ V),

where S(p*) ® (S™(p*) ® V*) is looked upon as the space of polynomial
functions on p with values in S™(p*) ® V.*.

Lemma 3.2. It holds that V" f = 1® f for every f € S™(p*) V", where 1
denotes the identity element of S(p*). Namely, V™ f is the constant function
on p with the value f € S™(p*) @ V.

Proof. It is enough to prove the lemma for f = (D*)? ® v* with |8| = n
and v* € V*. In view of (3.11), V" f turns to be
n 1 ERYed (3 * * * *
VYY) =) (D)@ (OD)(D Y)Yt = (D) @ =,

la]=n

which proves the lemma. O

We note that our submodule N of S(p) ® V; is finitely generated over
S(g), since the ring S(g) is Noetherian and since S(p) ® V, = S(p) - V.
Hence, there exist a finite number of homogeneous K¢-submodules W,, C N
(w=1,...,q) which generate N over S(g):

N=5S(g) - Wi+ +S(g)-W, with W,cCS"(p)oV,  (3.13)

for some integers ¢,, > 0 arranged as 4y < --- < ¢4. Foreach u =1,... ,q,

let P, denote the K¢c-homomorphism from S% (p*) ® V.* to W, defined by
P,(h)(w) :==(w,h) (weW,) (3.14)
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for h € S (p*) ® V*. Here, (-, -) is the dual pairing in (3.5).
We now set

q
w* =P wy,
u=1
and let us introduce an (S(g), K¢)-homomorphism

D:Sp) @V — S @ W, (3.15)

by putting

q

(DAHY) =D Pu(V"FY)) (Y ep;feShp)aV)y). (3.16)

u=1

Definition 3.1. We call D the differential operator of gradient type asso-
ciated with (V*, W*).

The space of solutions of the differential equation Df = 0 is character-
ized as follows.

Proposition 3.2. One gets N* = KerD. Hence, the kernel of the dif-
ferential operator D is isomorphic to the Kc-finite dual M* of M ~
(S(p) ® V;)/N, as (S(g), Kc)-modules.

Proof. Let f be a homogeneous element of S(p*) ® V* of degree n. We are
going to show that f lies in N if and only if Df = 0. This will prove the
proposition because both Ker D and N+ are graded (S(g), K¢ )-submodules
of S(p*) @ V.

First, the condition f € N+ is written as

(Dw.,, f) =0 (3.17)

for all D € S"~"(p) and w, € W,, (u=1,...,q), by noting that S™(p) ®
V, is orthogonal to f € S™(p*) @ V.* if m # n. Here S" " (p) should be
understood as {0} if n —4,, < 0. Since the pairing (-, -) is S(g)-invariant,
(3.17) is equivalent to

P,(3(D)f)=0 forall D€ S" "(p) (u=1,...,q). (3.18)

We set Dy, f := P, (V" f)(+)) € S""(p*) ® W. Then, in view of Lemma
3.2, the left hand side of (3.18) turns to be

P,(8(D)f) = P.(V*a(D)H)(Y)) = (AD)D))Y) (Y €p).
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We thus find that f lies in N* if and only if
O(D)D,f =0forall D € S" % (p) (u=1,...,q),

or equivalently, D,,f =0 (v =1,...,q). This means Df = 0 as desired. O

Let us define a map o from p* x V* to W* by
a
o(X*,v") =Y P,((X*)*®v*) for (X*,0*)ep x V",  (3.19)
u=1

which we call the symbol map of D.
For any fixed X € p, we get the following characterization of W (0)*.

Proposition 3.3. The K¢(X)-submodule W(0)* of V* (see (3.8)) is de-
scribed as

W) =Kero(X*, -) ={v" eV} | o(X",v") =0}, (3.20)
where X* € p* corresponds to X € p by (3.4).

This proposition can be proved just as in the proof of [30, Lemma 3.10]
(see also the proof of Lemma 3.1 (1)). We omit the proof here.

4. Isotropy representation attached to discrete series

In this section, we assume that g = €@ p is an equi-rank algebra (cf. [17]),
i.e., rank g = rank €. By using our results in Section 3, we study the isotropy
representations attached to irreducible (g, Kc)-modules of discrete series.
This develops our work in [29].

4.1. Discrete series

We begin with a quick review on the discrete series representations, and
let us fix our notation. As is well known, the complex Lie algebra g has a
0-stable real form gq such that

gOZEO@pO with & CZEﬂgo, Po :=pNgo,

gives a Cartan decomposition of gg. Such a real form gq is unique up to
Kc-conjugacy. Take a maximal abelian subalgebra t; of £y, and we write t
for the complexification of t; in €. Since g is an equi-rank algebra, t turns
to be a Cartan subalgebra of g. We write A for the root system of (g,t).
The subset of compact (resp. noncompact) roots will be denoted by A,
(resp. Ay).
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Let G be a connected Lie group with Lie algebra of gy such that K¢ is the
complexification of a maximal compact subgroup K of G. An irreducible
unitary representation o of G is called a member of discrete series if the
matrix coefficients of o are square-integrable on G. We are concerned with
the irreducible (g, K¢)-modules X of discrete series, consisting of K-finite
vectors for such o’s. For example, we refer to [9], [18], and also [26, I, Section
1] for the parametrization and realization of discrete series representations.

Now, let X = X5 be the (g, K¢)-module of discrete series with Harish-
Chandra parameter A € t*. Since the parameter A is regular and real
on v/—1to, there exists a unique positive system A%t of A for which A is
dominant:

At :={a €A | (A ) >0} (4.1)

We denote by (7,V,) the unique lowest K¢-type of X which occurs in X
with multiplicity one. Set A} := AT N A, (resp. A := AT N A,). The
AF-dominant highest weight A (say) for 7 is called the Blattner parameter
of X. Then, A is expressed as A = A — p. + pp, with pe:=(1/2) -3 ca+ @
and pp 1= (1/2) - 3050 a4 B-

4.2. Results of Hotta-Parthasarathy

In what follows, we always assume that the Blattner parameter A of X is far
from the walls (defined by compact roots) in the sense of [26, I, Definition
1.7]. Let M = gr X = ®,,>0M,, be the graded (S(g), K¢)-module defined
through the lowest K¢-type V. Asin Section 3, we have a natural quotient
map 7 : S(p) ® V., - M with N = Kerw. This subsection explains the
structure of graded modules M, N, and M* ~ Nt by interpreting the
results of Hotta-Parthasarathy in [9].
For this, we first decompose the tensor product p ® V.. as

PRV, = VT‘" @V as Kc-modules,

where V* denotes the sum of irreducible K¢-submodules of p @ V, with
highest weights of the form X\ + 8 (3 € A7), respectively. The inclusion
V= — p ® V; naturally induces a quotient map of Kc-modules:

P:p"@V:=paV) — (V7). (4.2)

T

Hereafter, we replace p* by p through the identification p = p* by the
Killing form of g restricted to p x p.
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Let B, be the Borel subgroup of K¢ with Lie algebra b, = ’c@ZaeAf o
where g, is the root subspace of g corresponding to a root a. We set

pe = P 915 (4.3)

peat

Then, we have p = p, & p_ as vector spaces, and p_ is stable under the
action of B,.

If U is a holomorphic representation of B,., the i-th cohomology space
H'(K¢/B.;U) of K¢/B, with coefficients in the sheaf of holomorphic sec-
tions of the vector bundle K¢ xp, U has a structure of K¢-module.

The following theorem can be read off from the proof of [9, Theorem
1] by taking into account the Blattner multiplicity formula [7] for discrete
series. (See also [18]; [29].)

Theorem 4.1. (1) One has N = S(p)V.
(2) The orthogonal N+ of N in S(p)®V,* coincides with the kernel of the
differential operator D on p of gradient-type associated with (V*,(V.7)*) :

(DHY) = P(Z Xi @ (X)) (Y €p), (4.4)

for f € S(p)®@V}. Here {X;}1<i<s is an orthonormal basis of p with respect
to the Killing form.

(8) For every integer n > 0, the dual M of M, is isomorphic to the
cohomology space:

HY(Kc/Be; S™(p-)®C_r_2,,) with q:=dim Kc¢/B.,

as a Kc-module. Here C_\_,,, denotes the one dimensional B.-module
corresponding to —\ — 2p. € t*.

Note that the claim (2) can be deduced from claim (1) by Proposition
3.2.

Remark 4.1. The maximal globalization of dual (g, K¢)-module X* of
discrete series can be realized as the kernel space of an invariant differen-
tial operator D of gradient type (on the Riemannian symmetric space for
(g0, )). The operator D in the above theorem gives the “polynomializa-
tion” of D.
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4.3. Description of associated cycle

We are going to apply Theorem 4.1 in order to describe the associated
cycles for (g, K¢)-modules of discrete series. For a positive number ¢, we
say that a linear form p on t satisfies the condition (FFW(c)) if

(p,a) >c forall ae Af. (FFW(c))

Theorem 4.1 coupled with the Borel-Weil Bott theorem for the group K¢
leads us to the following proposition(cf. [29, Section 6.1]), which is crucial
to describe the associated cycle of X.

Proposition 4.1. (1) Let v} be a nonzero lowest weight vector of V* of
weight —X. Then, N+ = Ker D contains the Kc-submodule (S(p—) @ vi) k.
generated by S(p_) @ v}.

(2) For any integer n > 0, there exists a positive constant ¢, such that

(N)n = (" (p-) ® v}) k. (4.5)
holds if the Blattner parameter X\ satisfies the condition (FFW(c,)).

Now, let O be the unique nilpotent Kc-orbit in p which intersects p_
densely. Then one sees that O = Ad(K¢)p_. As before, we write I for
the prime ideal of S(g) defining O. It follows from the the claim (1) in
Proposition 4.1 that AnnggM C I, ie., V(X) D O. Also, the same claim
shows p_ ® v} € Ker P, which can be easily verified by noting that —\ — 3
(8 € A}) cannot be a weight of (V. )*.

Take an element X € O Np_. By Proposition 3.3, we find that the
K¢(X)-module W(0)* = (M/m(X)M)* C VF consists exactly of all the
vectors v* € V* satisfying P(X ® v*) = 0. Let Nk (X,p_) be the totality
of elements k € K¢ such that Ad(k)X € p_ (cf. [3]). For any subset R of
Nk.(X,p_), we denote by Uy(R) the K¢(X)-submodule of V* generated
by R™' - vi:

UN(R) := (R™" v} ) o x)-
Then, we readily find from p_ ® vy € Ker P that
Uy(R) CW(0)*, andso (X" @U\(R))k.C ¥, C(NY),, (4.6)
for every n > 0. Moreover one gets the equality
(X" @ U(R) ). = (5" (p_) © 5 ) e (4.7)

if Ad(R)X C p_ is Zariski dense in p_. This is true when R equals the
whole Nk .(X,p_), because Ad(Ng.(X,p—))X =OnNp_ is dense in p_.
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As in Section 3, we take homogeneous generators D; (i = 1,...,r) of
the ideal I such that deg D; = n(i). We set ¢(I) := max;(cy(;)). By virtue
of Proposition 3.1 together with (4.5), (4.6) and (4.7), we come to the
following conclusion.

Theorem 4.2. Assume that the Blattner parameter A of discrete series X
is far from the walls in the sense of [26, I, Definition 1.7] and that it also
satisfies the condition (FFW(c)) with ¢ = ¢(I).

(1) One gets I = Anngg)M and so V(X) = Ad(K¢)p- = O. More-
over, the K¢(X)-module W* contragredient to the isotropy representation
(wo, W) is described as

W =W(0)" = {v* € V/ | P(X ®v") =0}, (4.8)

where X € ONp_, and P:p@ V> — (V.7)* is the Kc-homomorphism in
(4.2).

(2) Let R be a subset of Nk.(X,p_) such that Ad(R)X is Zariski dense
in p_. Then, the Kc(X)-submodule Uy(R) = (R™" - v}) k. (x) C W* is
exhaustive in the following sense: for every integer n > 0, one has

(X" @WKk = (X" @UN(R)) k- (4.9)
if X satisfies FFW(c,, ), where c, is the positive constant in Proposition 4.1.

Remark 4.2. (1) The assertions I = Anngg)M and V(X) = Ad(Kc)p—
have been obtained in [29]. But, in that paper, we did not discuss the
possibility of applying the results to describe the isotropy representation.
(2) One should get a result similar to Theorem 4.2, more generally for
the derived functor modules A4(A).
(3) Compare Theorem 4.2 (1) with Chang’s result [3, Proposition 1.4]
established by means of the localization theory of Harish-Chandra modules.

4.4. Submodule Ux(Q.)

In this subsection, we give a natural choice of R C Nk .(X,p_) for which
we expect to have the property (4.9). Let II be the set of simple roots in
At. We write S = IIN A, for the totality of compact simple roots. Then,
there exists a unique element Hg € t such that

(Hs) 0 ifa€es,
a =
7 \1 ifaes.
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The adjoint action of Hg yields a gradation on the Lie algebra g as
g=EP a(j) with o(j):={Z €q| (adHs)Z = jZ}.

J
Here j runs through the integers such that |j| < §(Hg) with the highest
root 8. Note that

t= P o), p=@EP o) with pr= P o).

Jreven jJrodd 7>0,0dd

Now, we set

q:= @ g(y), l:=g(0)Ct and u:= ED 9(7).
§<0 j<0

Then, g = [ & u gives the Levi decomposition of the standard parabolic
subalgebra q of g associated with the subset S of II. We write @ (resp. Q.)
for the parabolic subgroup of G¢ := G(‘“Cd (resp. of K¢) with Lie algebra
q (resp. qN¢€). The group @ (resp. Q.) admits the Levi decomposition
Q = LU (resp. Q. = L.U.), where L and U (resp. L. and U,) are the
connected subgroups of @ (resp. Q.) with Lie algebras [ and u (resp. [
and u N €) respectively. Note that Ad(L.) = L. The parabolic subgroup Q
acts on its nilradical u, and so Q. acts on p_ = pNu by the adjoint action.
Thus, Q. is contained in Ng.(X,p_) for all X € p_, and the corresponding
K¢(X)-submodule Uy (Q.) of V.* turns to be

Un(Qc) = (V) ) ko) (4.10)

Here, (Vi¥)* = U(I)v} denotes the irreducible L.-submodule of V,* gener-
ated by the lowest weight vector v3.
We can now apply Theorem 4.2 to deduce

Corollary 4.1. Under the assumption in Theorem 4.2, the K¢(X)-
submodule U\(Q.) of W* is ezhaustive in the sense of (4.9), if p— is a
prehomogeneous vector space under the adjoint action of the group Q., and
if X € ONp_ lies in the open Q.-orbit in p_.

4.5. Relation to the Richardson orbit

We end this article by looking at the condition for p_ in Corollary 4.1,
and also some related conditions, in relation to the Richardson Gc-orbit
associated with the parabolic subalgebra q.

First, let us recall some basic facts on the Richardson orbit (cf. [12,
Chapter 5]). The G¢-stable subset G¢ - u (C g) forms an irreducible affine
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variety of g whose dimension is equal to 2dimu. Noting that G¢ -u consists
of nilpotent elements only, there exists a unique G¢-orbit O such that

5:G@-u,

by the finiteness of the number of nilpotent Ge-orbits in g. O is called the
Richardson Gc-orbit associated with gq. The parabolic subgroup @ acts on
u prehomogenenously, and ONu turns to be a single Q-orbit in u. Moreover,
the centralizer in g of any element X € O Nu is contained in q.

Now, let O be the nilpotent K¢-orbit in Section 4.3. Then we have two
nilpotent G¢-orbits Ge - O and O with the closure relation G¢- O C O. By
virtue of a result of Kostant-Rallis [15, Proposition 5], this relation implies
that

1 1 .
dim O = Edich-O < idimO:dimu. (4.11)

In particular, we find that the Gelfand-Kirillov dimension dim V(X)) =
dim O of discrete series X cannot exceed dim u. The following proposition
tells us when these two orbits turn to be equal.

Proposition 4.2. The following three conditions (a), (b) and (c) on the
positive system At = {a| (A, ) > 0} are equivalent with each other:

(a) Ge-O =0, (b) dimO =dimu, (c)ONp_ #0.

In this case, O Np_ is a single open Q.-orbit in p_, and so one gets the
conclusiton of Corollary 4.1.

Proof. The equivalence (a) < (b) is a direct consequence of (4.11). The
condition (a) immediately implies (c), since O (C G¢ - O = O) contains an
element of p_. Conversely, if on p_ # 0, this is a nonempty open subset
of p_, since O Np_ = (O Nu)Np_ with O Nu open in u. Hence, O Np_
intersects O. We thus get (¢) = (a). This proves the equivalence of three
conditions in question.

Next, we assume the condition (b) (& (a) & (c)), and let X be any
element of O Np_. We write 35(X) for the centralizer of X in a Lie sub-
algebra s of g. By noting that 34(X) C ¢, the dimension of the Q.-orbit
Ad(Q.)X is calculated as

dim Ad(Q.)X = dim q N € — dim 34qe(X)
= (dim ¢ — dimu N ) — dim 3¢(X)
=dimO —dimuné=dimu —dimuné=dimp_,
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where we used the condition (b) for the forth equality. This shows that
the orbit Ad(Q.)X is open in p_ for every X € O Np_. We thus find
that O Np_ forms a single @Q.-orbit, because of the uniqueness of the open
Qc-orbit in p_. O

Remark 4.3. Each of the conditions (a), (b) and (c¢) in Proposition 4.2 is
equivalent to Assumption 2.5 in [2] concerning the generically finiteness of
the moment map defined on the conormal bundle T (Gc/Q), where Z; is
a closed Kc-orbit in G¢/Q through the origin eQ.

Suggested by Corollary 4.1 and Proposition 4.2, let us consider the
following three conditions on p_ which depends on the choice of a positive

system At:
ONp_#0 (e dimO =dimu & G¢-0=0), (C1)
O Nyp_ is a single Q.-orbit, (C2)
p_ is a prehomogeneous vector space under Ad(Q.). (C3)

Proposition 4.2 says (C1) = (C2), and the implication (C2) = (C3) is
obvious.
As for the conditions (C2) and (C3), we can show the following

Proposition 4.3. One gets (C3) if ONg(—1) # 0. Moreover, the equality
Ad(Q.)(ONng(—1)) = ONp_ assures (C2).

Proof. Let X € Ong(—1). Since O = Ad(K¢)X contains a nonempty
open subset of p_, we find that [¢, X] D p_. We set €1 := ®;500(2j). Then
E=¢€tNq®E, is a direct sum of vector spaces. Then it follows from the
assumption X € g(—1) that [¢;,X] C p; and [ENgq,X] C p_. We thus
obtain

p-=[6,X]Nnp_=[tnq, X].

Hence Ad(Q.)X is open in p_, and one gets (C3).
The above argument shows that any element X € O Nng(—1) lies in the
unique open Q.-orbit in p_. This proves the latter claim, too. O

Following Gross-Wallach [5], we say that a discrete series (g, K¢ )-module
X is small if §(Hg) < 2, or equivalently, g(j) = {0} if |j| > 3. Here 6 is
the highest root of A* as before. In this case, one has p_ = g(—1), and so
the above proposition implies
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Corollary 4.2. The subspace p_ corresponding to a small discrete series
admits the property (C2).

Remark 4.4. By case-by-case analysis, Chang [3] proved the property
(C2) for any discrete series representations of simple Lie groups of R-rank
one.

4.6. Condition (C1) for SU(p,q)

It should be important to study when p_ admits the properties (C1), (C2)
and (C3), respectively. Toward this direction, we end this paper by giving
an explicit, combinatorial criterion for the condition (C1) in case of G =
SU(p, q) with n = p + q. In this case, we have g = sl(n, C), and let

Qp =€&1 — €2, Qg =€2 —€3, ..., Opn_1 =En—-1 —E&n

be the simple roots for (g,t) by the standard notation of Bourbaki. Then
p_’s in question are in one-one correspondence to the set of noncompact
positive roots {an,, Qnitnss «-+ s Qngtetn, o}, Where ny,... n;q1, and
ny:=n— (ng +---+ ny_1) are positive integers such that

Z nj =p or q.
jJrodd

Theorem 4.3. p_ satisfies the condition (C1) if and only if the corre-
sponding partition (ny,ma, ... ,ny) of n is unimodal, that is, there exists a
positive integer k (1 < k < t) such that

ny <o Sy SN 2 N 2000 2 My
If p,q < 3, every partition (nq,...,n) is unimodal, and we always get
the property (C1). On the contrary, the partition (2,1,2) for SU(4,1) is

not unimodal, and (C1) fails in this case, where dim O =7 < 8 = dim u.
We will discuss the detail elsewhere.
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