New applications of the geometric method of calculating syzygies.
Talk at the 6-th conference on nilpotent orbits and representation theory
Kawaguchi-ko, Japan, September 6-th, 2004.
In this talk T describe two recent applications of the method.

We work over an algebraically closed field K of characteristic zero.

1. The geometric technique.

Let us consider the projective variety V' of dimension m. For the purposes of this talk,
V = G/P for some reductive group G and parabolic subgroup P.

Let X = AIA{’ be the affine space which is a representation of G. The space X x V can
be viewed as a total space of trivial vector bundle £ of dimension n over V. Let us consider
the subvariety Z in X x V which is the total space of a subbundle § in £. We denote by
q the projection ¢ : X X V — X and by ¢’ the restriction of ¢ to Z. Let Y = ¢(Z). We
get the basic diagram

Z C XxV
ld la
Y C X

The projection from X x V onto V' is denoted by p and the quotient bundle £/S by

7. Thus we have the exact sequence of vector bundles on V'
0—S—E&—T—0

The dimensions of § and 7 will be denoted by s, t respectively. The coordinate ring of X
will be denoted by A. It is a polynomial ring in N variables over K. We will identify the
sheaves on X with A-modules.

The locally free resolution of the sheaf Oy as an Ox «y-module is given by the Koszul

complex

t 2
Ke(€):0 = A@ €)= ... = A" — p*(§) = Oxxv
where ¢ = 7*. The differentials in this complex are homogeneous of degree 1 in the
coordinate functions on X. The direct image p.(Oz) can be identified with the the sheaf
of algebras Sym(n) where n = S*.

The idea of the geometric technique is to use the Koszul complex K(&)e to construct
for each vector bundle ¥V on V the free complex Fq(V) of A-modules with the homology
supported in Y. In many cases the complex F(Oy ), gives the free resolution of the defining
ideal of Y.

For every vector bundle V on V we introduce the complex

K(€,V)e 1= K(§)e @0y v PV

This complex is a locally free resolution of the Ox yy-module M (V) := Oz & p*V.
Now we are ready to state the basic theorem (Theorem (5.1.2) in [W]).
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Theorem 1. For a vector bundle V on V we define a free graded A-modules
i+j
FOV); =P H (V, \ (@ V) @p A(—i — j)
320
a) There exist minimal differentials
of degree 0 such that F(V)e is a complex of graded free A-modules with
H_;j(F(V)s) = R'¢. M(V)
In particular the complex F(V), is exact in positive degrees.
b) The sheaf Riq.M (V) is equal to H'(Z, M(V)) and it can be also identified with the
graded A-module H'(V, Sym(n) ® V).
c) If g : M(V) — M(V')(n) is a morphism of graded sheaves then there exists a morphism
of complexes
fo(#) : F(V)e = F(V')s(n)
Its induced map H_;(fe(¢)) can be identified with the induced map
HY(2,M(V)) — H(Z M) (n).

If V is a one dimensional trivial bundle on V' then the complex F(V), is denoted
simply by F,.
The next theorem gives the criterion for the complex Fq to be the free resolution of

the coordinate ring of Y.

Theorem 2. Let us assume that the map ¢’ : Z — Y is a birational isomorphism. Then
the following properties hold.
a) The module ¢, Oy is the normalization of K[Y].
b) If Ri¢.Oz = 0 for i > 0, then F, is a finite free resolution of the normalization of
K[Y] treated as an A-module.
c) If ROy =0 for i > 0 and Fy = H(V, /\0 §) @ A= A then Y is normal and it has

rational singularities.

This is Theorem (5.1.3) in [W].

This technique was successfully applied to determinantal varieties related to generic,
symmetric and skew-symmetric matrices. Also interesting results regarding defining ideals
of nilpotent orbits were obtained. The determinantal expressions for resultants and dis-
criminants were also obtained usiing this method. All these developments are described in

One should point out that the terms of the complex Fo can be calculated fully only
when the bundle ¢ has convenient form (for example is a tensor product of tautological

bundles on some Grassmannians). We will refer to this saying that £ is in a simple form.
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Notation. In the examples below, for the integers a; with a; > ... > a,, > 0, we denote
S(ay,...,an)E the highest weight representation of the group GL(E) corresponding to the

weight (aq,...,ay), i.e. the Schur functor.

2. Representations with finitely many orbits.

The natural scope for application of this method is afforded by the orbit closures in the
irreducible representations of simple groups with finitely many orbits. These were classified
by Kac [K] and, with some minor corrections added, by Leahy [Le].

The first type of such representations (Table IT in [K]) is the family of representations
parametrized by a Dynkin diagram with the distinguished (black) node. Distinguishing
such a node determines a grading on the corresponding root system, in which all sim-
ple roots except the one corresponding to the black node, have degree 0 and the root

corresponding to the black node has degree 1. This leads to a grading
g = Diezyg,

of the Lie algebra g corresponding to our Dynkin diagram. The representation we are
interested in is the representation of G (the group corresponding to the Lie algebra g o on
g, The orbits of such actions were classified by Vinberg in [V]. They are the irreducible
components of intersections of nilpotent orbits in g with g L

For Dynkin diagrams of classical types, most of the representations one gets are of
the type Hom(FE, F') where E is a vector space and F' is a symplectic (resp. orthogonal
vector space), with the action of the group GL(E) x SP(F) (resp. GL(E) x SO(F)).

Last year Steve Lovett obtained in his thesis [L] some very interesting results on such
orbit closures. Let me describe his results.

Consider the representation Hom(FE, F'). We denote dim E = e, dim F = f. The
orbits in such representations are described by two rank conditions: the rank r; of the
map ¢ € Hom(E, F) and the rank ry of the form on F restricted to m(¢). We denote the
corresponding orbit O, ., and the orbit closure Z, ., := Orl,rz.

Lovett found desingularizations of the orbit closures Z, for which geometric tech-

1,72
nique is applicable. Unfortunately, the bundles £ are not very simple, they are extensions
of two tensor products. Lovett first classifies the orbit closures for which one can find a

desingularization with ¢ in a simple form.

Definition. An orbit closure Z,, ,, is special if one of the following conditions holds.

a) ro =0,
b) T =To,
c) ry=e,



d) 21”1 — T2 :f

For special orbits the terms of the complexes F4 are calculated explicitly thus providing
minimal free resolutions of the coordinate rings.

In particular we get

Theorem 3 (Lovett). Let E be a vector space, F- a symplectic or orthogonal vector

space. Let Z, be a special orbit closure. Then Z, is normal, with rational singular-

1,72 1,72

ities (hence Cohen-Macaulay), except in the case when F is orthogonal and case d) above
occurs (with ro # 0 if f is even). In these bad cases the normalization of the coordinate

ring has rational singularities, but the coordinate ring itself is not Cohen-Macaulay.

One should add that the defining ideals for normal special orbit closures are given
by natural rank conditions, i.e. by r1 4+ 1 minors of ¢ and by the corresponding pfaffians
(resp. minors) of the skew-symmetric (resp. symmetric) matrix given by SP(F) (resp.
SO(F))-invariants in A of degree 2.

The next question are the properties of nonspecial orbits.

Theorem 4 (Lovett). Let E be a vector space, F- a symplectic or orthogonal vector

space. Let Z, be a nonspecial orbit closure. Then the coordinate ring of Z,., ., is Cohen-

1,72 1,72

Macaulay. Moreover, the defining ideal of Z, is given by natural rank conditions.

1,72

Sketch of proof Consider the Grassmannian Grass(e — r1, F') and the desingularization of

the determinantal variety
7 ={(¢,R) € X x Grass(e — 1, E) | ¢|r = 0}.

Now, take the relative version of the resulution of the orbit closure O, ,, in Hom(E'F)
with dim E’ = ry, and changing E’ to the tautological factor bundle Q. Notice that
this orbit was special (case c)), so it has rational singularities and the resolution could
be effectively described. Taking the direct image over Grass(e — ry, E) of all the terms,
we get a complex of sheaves of B-modules where B = Sym(Q ® F) is a sheaf of algebras.
Moreover, the terms of the resolution are the direct sumes of sheaves of type S, Q® B. Let
us denote the i-th term of this complex by F; (0 < ¢ < d). Here d is the codimension of
Zy, v, in Hom(E', F).

The key observation is as follows

Fact.
a) H(Grass(e — 71, E),F;) =0 for j > 0,0 <i <d,
b) H°(Grass(e — r1, E),F;) is a maximal Cohen-Macaulay module supported in deter-

minantal variety Z,, ,, .

The second fact is proved by geometric method for twisted modules supported in the

determinantal variety.



This result implies that we can construct the resolution of the cokerel of the exact

sequence

0 — H°(Grass(e —r1,E), Fq) — ... —
— H°%(Grass(e —r1, E), F1) — H°(Grass(e — 1, E), Fo)

by iterated cone construction from the terms of resolutions of H(Grass(e — 1, E), F;).

This gives a nonminimal resolution of the coordinate ring of 7, of the length equal to

1,72
its codimension.

The claim about the equations comes from analysing the low degree terms in the
complex. After we establish that the generators correspond to natural equations giving
rank conditions, we notice that since the ideal is perfect, in order to prove it is reduced, it is

enough to show it is generically reduced. This can be then done explicitly by localization.

3. The secant varieties.

I am collaborating with Joe Landsberg and Laurent Manivel on secant varieties for multiple
Segre embeddings. These were studied in the past only regarding their dimensions. Other
properties and defining equations were not investigated. We are dealing here with the
tensor product F; ® ... ® F, and the subvariety X of totally decomposable tensors. The
variety Sec(X) is the closure of the set of tensors that can be written as a sum of two
totally decomposable tensors.

Landsberg and Manivel observed in [LM] that the geometric method can be applied.
Using the fact that the secant variety Sec(X) in F} ® Fo ® F5, dim F; =2 for 1 <i <3
is the whole space F| ® Fy, ® F3 they proved

Theorem 5 (Landsberg-Manivel). Let us consider the secant variety Sec(X) in F; ®
F>® F3. It is normal, with rational singularities. The defining ideal of Sec(X) is generated
in degree 3. The generators are 3 X 3 minors of linear maps ¢; j : F; Q F; @ A(—1) — Ff®A
(here {i, j, k} = {1,2,3}) induced by ¢ € F|} ® Fy ® F3.

This case might seem special because of the special property of the secant variety for
3 copies of K? we used.

We analyzed the case of four copies.

Theorem 6 (Landsberg-Manivel-JW). Let us consider the secant variety Sec(X) in
Fy ® Fy ® F5 ® Fy. It’s coordinate ring is Cohen-Macaulay. The defining ideal of Sec(X)
is generated in degree 3. The generators are 3 x 3 minors of linear maps ¢; ; : F; @ F; ®
A(-1) — F} @ F @ A (here {1, j, k,l1} ={1,2,3,4}) induced by ¢ € F| ® F5 ® Fj.

Sketch of proof The proof is very similar to the proof of theorem 4.
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Consider the product of Grassmannians H?:l Grass(f; — 2, F;) and the desingulariza-

tion of the corresponding variety Z, which has
p«(Oz = Sym(®;_, Q)

where
0—R; — F; ® Grass(f; —2,F;) - Q; — 0

is a tautological sequence on Grass(f; — 2, F;), with f; = dim F;. Now, take the relative
version of the resulution of the variety Sec(X) in product of 4 copies of two dimensional
spaces. This is a variety of codimension 6 and the resolution of its coordinate ring can be
calculated using Macaulay 2.

We get a complex of sheaves of B-modules with the terms being the direct sumes of
sheaves of type ®;’1:15ai,b.;)Qi ® B. Let us denote the i-th term of this complex by F;
(0<i<6).

The key observation is again

Fact.
a) H'(Grass(e —r,E),F;) =0 for j >0,0<1i <6,
b) H°(Grass(e — 1, E),F;) is a maximal Cohen-Macaulay module supported in the
variety Z.

Now we can repeat the reasoning used to prove theorem 4.
We have similar results for the second secant variety in the Segre embedding of a triple
product of projective spaces.

References.

[K Kac, V. Some remarks on nilpotent orbits, J. Algebra, 64(1980), 190-213,
[LM] Landsberg, J., Manivel L., On the ideals of secant varieties of Segre varieties, preprint,

math.AG/0311388

[Le] Leahy, A.,, A classification of multiplicity free representations, J. Lie Theory 8, No.2,
367-391 (1998),

[L] Lovett, S., Orbits of orthogonal and symplectic representations of symmetric quivers,
Ph.D. Thesis, Northeastern University, 2003,

[V] Vinberg, The Weyl group of a graded Lie algebra, Math. USSR-Izv. 10(1976), 463-
495,

[W] J. Weyman, “Cohomology of vector bundles and syzygies”, Cambridge Tracts in Math-
ematics, No. 149, Cambridge University Press, 2003.



