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1. Dual pairs, correspondence of the semisimple orbits, and the Capelli

Harish-Chandra homomorphism.

Here we recall some notation and results from [P3]. Let D = R, C or H, and let

Vo, Vi be two finite dimensional left vector spaces over . Set
(1.1) V=VWweW

and define an element s € End(V') by

(1.2) s(vo +v1) =vp — v1 (v, € Vo, v1 € V7).

Set
End(V)o ={z € End(V); sz = xs},

(1.3) End(V), ={z € End(V); sz = —xs},
GL(V)o = GL(V) N End(V)o.
The real vector space End(V)g is a Lie algebra, with the usual commutator [z, y| =

xy — yx. The action of GL(V')g, by conjugation, on End(V)

Conj(g)r = grg™* (9 € GL(V)o, v € End(V))
preserves both End(V) and End(V);. Furthermore, the anticommutator
(1.4) End(V); x End(V)1 3 (z,y) — {z,y} = xy + yzr € End(V)y
is R-bi-linear and GL(V')gp-equivariant. Set
(1.5) (z,y) = trp/r{sz, y} (x,y € End(V)).

It is easy to see that the form (1.5) is preserved under the action of GL(V)y.
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Lemma 1.6. IfVy # 0 and Vi # 0 then the restriction of the bilinear form (| ) to

End(V)q is symplectic and non-degenerate. Moreover, the group homomorphism
Conj : GL(V)g — Sp(End(V)1,(, ))

maps the groups
GL(V)O|VO = {g € GL(V>07 g|V1 - 1}7

GL(V)olv, ={9 € GL(V)o; glv, =1}

injectively onto an irreducible dual pair of type II in the symplectic group Sp(End(V)1,{(, )).

Let ¢ be a possibly trivial involution on . Let ¢ be a non-degenerate (-hermitian
form on Vj, and let ¢; be a non-degenerate (-skew-hermitian form on V;. Set

¢ = ¢o D ¢1. Define
s(V,)o = {z € End(V)o; ¢(zu,v) = ¢(u, —zv), u,v € V},
(1.7) s(V,9)1 ={z € End(V)1; ¢(xu,v) = ¢(u, sxv), u,v € V},
S(V,¢)o ={g € GL(V)o; d(gu,gv) = ¢(u,v), u,v € V}.
Clearly, S(V, ¢)o is a Lie subgroup of GL(V)g, with the Lie algebra s(V, ¢)o. More-
over, it is easy to check that the anticommutator (1.4) maps s(V, ¢); x s(V, ¢); into

s(V,¢)o. Furthermore, the adjoint action of S(V,¢)o preserves s(V, ¢)o, s(V, ¢)1,
and the form (1.5).

Lemma 1.8. If Vi # 0 and Vi # 0 then the restriction of the bilinear form ( , )

to s(V, )1 is symplectic and non-degenerate. Moreover,

Conj : S(V,¢)o — Sp(s(V,é)1,( , ))

maps the groups
S(‘/, @b)O’VO = {g € S(V7 ¢)0; glVl = 1}7

S(‘/a ¢)0|V1 = {g € S(V7 ¢)07 glVo - ]‘}

injectively onto an irreducible dual pair of type I in the symplectic group Sp(s(V, )1, (, )).

Definition 1.9. An irreducible ordinary classical Lie supergroup is a pair (S,s)

with s = so & s1, where either

(I) S = S(V, 925)0, 50 :5(V7 ¢)0, 51 ZE(V, (f))h as i (1.8),



or

(H) S = GL(V)O, 50 = E?‘Ld(V)(), 51 = End(V)l, as in (13)

In order to simplify the notation we shall write gx instead of Conj(g)x, for g € S

and z € s1, and similarly for 22. For z € s; define the anticommutant of x in s; by

Y51 ={z €s1; {x,2} =0}

Definition 1.10. The element x € s1 s called semi-simple if and only if x is semi-
simple as an endomorphism of V. An element x € s1 is reqular if and only if the
S-orbit through = is of maximal possible dimension. A Cartan subspace by C 81 is

the double anticommutant b, = C*Vs; of a reqular semisimple element of x € s.

Let h; C s; be a Cartan subspace and let ;Y C h; be the subset of regular
elements. Denote by h? = {hy, b1} the linear span of the elements {x,y}, where
2,y € h1. (This is the same as the span of all the squares, 22 = %{x,x}, T € 81,

hence our notation h?.)

The following proposition may be viewed as ”a linearization” of the correspon-
dence of the semisimple orbits for dual pairs. The injectivity of this correspondence
was verified by Roger Howe, with the proof based on Witt’s Cancellation Theorem,

[J].

Proposition 1.11. The relation

(a) {(@®|vy, 2®|13); & € 11} C bTlw, X bilv,

18 an invertible function, which extends uniquely to a linear bijection
(b) b3lve < bilvs-

Suppose the rank of S|y, is less than or equal to the rank of S|v,, {i,j} = {0, 1}.

Then B3|y, is a Cartan subalgebra of solv; .

In order to compress the notation we shall write

G=Slv,, 9=s0lv,, G'=S vi.h' =3

/
Vi, 8 = 50 V-
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We identify
(1.12) b = by,
by (1.11.h).
Let 3 be the centralizer of b’ in g. The h’ C 3. Let 3 be the orthogonal comple-
ment of b’ in 3, so that 3 = b’ @ 3”. In particular we have
(1.13) Uz) =Ub) @UG").

Let h” C 3" be a Cartan subalgebra. Then h = h’ 4+ bh” is a Cartan subalgebra of g.

Also, let
7 = the centralizer of §" in G,

Z" = the isometry group with the Lie algebra 3",
W' = the Weyl group for (Gg, '), and

W = the Weyl group for (Gc, b).
Denote by
e:UE") = C
the augmentation homomorphism (The derivative of the trivial representation of
Z"). Then, by (1.13),
1®e:UGE) — UN).
The Capelli Harish-Chandra homomorphism is defined by

(1.14) C:U(@) — Uum” — u@? — umH)"'

NG’
1 - u(g) )
Ya/b 'y;/h 1®e

-1
'Yg//h/
where 7,y is the Harish-Chandra isomorphism. (see [H-C 1, Theorem 2, p. 125]
and [H-C 2, Lemma 13, p. 466])

1. The Classical Invariant Theory in terms of characters.

Let
Sp° ={(g,€); g € Sp, det(g — 1) # 0}.
Then the set
Spe = {(9,€); g € Sp°, € =det(i(g— 1))}
is a real analytic manifold, and a two fold covering of Sp¢ via the map
(2.1) Sp° > (9.6) — g € Sp°.
Let

(2:2) ©:5p° 3 (g,6) = £ €C,



Theorem 2.3 (Howe [H2]). The map (2.1) extends to the double covering map
3’;9 — Sp, from the metaplectic group 3\]/9 to Sp, and © is the character of one of

the two oscillator representations of S’\}/?

Let G,G' C Sp be the preimages of G,G’ C Sp. Let I be an irreducible
admissible representation of G’ corresponding via Howe’s Correspondence to an

irreducible admissible representation II of G, [H1].

Theorem 2.4. If G’ is compact, then (in terms of generalized functions)

(a) /G Om(g)0(y'9)dy’ =Oulg) (g€ @),
and
o [ (e Bn@) ewads == -enta) (= €U(s)°),

The Cauchy Harish-Chandra Integral:
(2.5) CHC : invariant eigen-distributions on G’ — invariant distributions on G,

is a construction, based on limits of holomorphic functions and Harish-Chandra’s
orbital integrals, valid for an arbitrary dual pair (G', G), with the rank of G’ less
or equal than the rank of G, see [P2, Def. 2.17]. If G’ is compact, then

CHO®w)9) = [ Buls)0ls)dy'
as in (2.4.a).
Conjecture 2.6. With the above notation we have:
CHCoC(C(z) =2z0CHC (z €U(g)").
In our joint work in progress, with Florent Bernon, we have already verified this

conjecture for the pairs (GL,, (D), GLy, (D)), (Op(C), Sp2n(C)), (Up,q,Urs) with
p+q=r+ s, and for the pairs (G, G) in deep stable range (see [D - P]).



3. A question.

For a Lie group G with the Lie algebra g, and the dual g*, we may identify the
cotangent bundle T*G with the direct product G x g*, so that for any f € C°(G),

df is a g*-valued function given by

(3) Flo)w) = o flgemptr)izo (g€ G € a).

Under this identification the action by the left translations on T*G is identified
with the left translations on G times the identity on g*. The right translations
become the right translations on G times the coadjoint action on g*. In particular
the wave front set, (see [HO]), of a conjugation invariant distribution on G is a
subset of G x g*, invariant under the simultaneous action by conjugation on G and

the coadjoint action on g*. (See [H3| for more details.)

The following lemma, [P2, Lemma 12.2], is the key to the construction of the
Cauchy Harish-Chandra Integral.

Lemma 3.2. With the above identifications we have

(a) WE(©) ={(g,€) € Sp x sp*; (1,€) € WF(O) and Ad*(g)¢ = &}

{§esp™; (1,§) e WF(O)}

is one of the two non-zero minimal nilpotent coadjoint orbits in sp*.

Thus, it would be interesting to know, for which groups and for which characters
does the formula (3.2.a) hold. Since the notion of the wave front set for p-adic
groups was rigorously defined in [He], (see also [P1]), this question makes sense and

seems interesting even for those groups.
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