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• gC a semisimple complex Lie algebra

• GC adjoint group of gC

• q = l⊕ u parabolic subalgebra of gC

• Q cncted Lie subgroup of GC such that Lie(Q) = q

Theorem (Richardson 1974). There exists v ∈ u
such that Q.v is an open and dense subset of u.

In other words the pair (Q, u) is a prehomogeneous
space in the sense of Sato and Kimura.

Moreover there exists a unique nilpotent orbit OgC
of GC in gC such that :

OgC
∩ u is an open and dense subset of u

OgC
∩ u is single Q-orbit in u.

OgC
is called a Richardson orbit.
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For example the principal orbit is always Richardson
and corresponds to a Borel subgroup.

Variations of Richardson’s theorem have been exten-
sively studied by Gerhard Röhrle and his collabora-
tors.

The Bala-Carter Correspondence:

[1976]. There is a 1-1 correspondence between nilpo-
tent orbits of GC on gC and GC-classes of pairs (l, p),
where l is a Levi subalgebra of gC and p a distin-
guished parabolic subalgebra of [l, l].

A nilpotent E ∈ gC is distinguished if the only Levi
that contains it is gC.

A parabolic subalgebra is distinguished if it contains
a distinguished nilpotent.

A nilpotent element is always distinguished in a min-
imal Levi that contains it.

The orbit OE of a distinguished nilpotent element E
is said to be distinguished also. And such an orbit is
always even.
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Jacobson-Morozov Theorem

Let E be a nilpotent element of gC then there exists
a semisimple element H and a nilpotent element F
in gC such that:

[H, E] = 2E, [H, F ] = −2F, [E, F ] = H

The triple (H, E, F ) is called a standard sl2-triple.

Jacobson-Morozov Parabolic Subalgebra

The standard triple (H, E, F ) defines a grading:

gC =
⊕
i∈Z

gi
C

where gi
C

= {Z ∈ gC : [H, Z] = iZ}.

Define q = l⊕ u with l = g0
C

and u =
⊕
i>0

gi
C
.

l is a reductive subalgebra of gC and u is a nilpotent
vector space.

q is called the Jacobson-Morozov parabolic subalge-
bra of E. It is uniquely determined by E for any
two Jacobson-Morozov parabolic subalgebras of E
are conjugate under GE

C
, the centralizer of E in GC,

and gE
C
⊂ q (Kostant)
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Richardson Orbits : Bala-Carter Correspondence

Any distinguished orbit OE is uniquely determined
by the Jacobson-Morozov parabolic subalgebra q of
any of its representatives. It is the Richardson orbit
attached to q.

(Bala-Carter) OE is distinguished ⇐⇒ dim l = dim u
[u,u]

Such q is said to be distinguished: A Borel subalge-
bra is always distinguished and corresponds to the
principal orbit.

Hence in one direction one can define an injective
map from distinguished orbits to conjugacy classes
of distinguished parabolic subalgebras:

OE −→ [q]of any Jacobson-Morozov parabolic q of E.

The classification is completed by showing that any
distinguished parabolic subalgebra q = l ⊕ u is the
Jacobson-Morozov parabolic subalgebra of a distin-
guished nilpotent E (relative to a suitable standard
triple).
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The Kostant-Sekiguchi Correspondence

In 1998, we extended the Bala-Carter correspondence
to real reductive Lie groups. The Kostant-Sekiguchi
correspondence played a key rôle in the project. Some
definitions:

� g = k⊕ p : Cartan decomposition

� Θ : Cartan involution for g

� G adjoint group of g

� K ⊆ G :maxl compact Lie(K) = k

� gC = kC ⊕ pC : Complexification

� σ conjugation of gC wrt g

� KC ⊆ GC : Lie(KC) = kC

� e nilpotent in pC

KC preserves pC.

� {x, e, f}: normal sl2-triple: x ∈ kC : e, f ∈ pC

Moreover e is KC-conjugate to a nilpotent e′ in-
side of a normal triple (x′, e′, f ′) with σ(e′) = f ′

[Sekiguchi]. The triple (x′, e′, f ′) will be called a
Kostant− Sekiguchi or KS-triple .

Every nilpotent E ′ in g is G-conjugate to the element
E of a triple (H, E, F ) in g with the property that
θ(H) = −H and θ(E) = −F [Sekiguchi]. Such a
triple will be called a KS-triple also.
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Define a map c from the set of KS-triples of g to the
set of KS- triples of gC as follows:

x = c(H) = i(E − F )

e = c(E) = 1
2(H − i(E + F ))

f = c(F ) = 1
2(H + i(E + F ))

The triple (x, e, f) is called the Cayley transform of
(H, E, F ). It is easy to verify that the triple (x, e, f)
is a KS-triple and that x ∈ ik.

The Kostant-Sekiguchi correspondence gives a one to
one map between the set of G-conjugacy classes of
nilpotents in g and the KC-conjugacy classes of nilpo-
tents in pC. This correspondence sends the zero orbit
to the zero orbit and the orbit through the nilpositive
element of a KS-triple to the one through the nilpos-
itive element of its Cayley transform. [Sekiguchi]

The correspondence was also proved independently
by D. Djoković (published ) and D. R. King (Classical
groups) (unpublished manuscript )

Related orbits are diffeomorphic [Vergne,1995]
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Classification of Real Nilpotent Orbits

� q = l ⊕ u : Θ-stable parabolic in gC

A nilpotent e ∈ pC is noticed if the only (Θ, σ)-
stable Levi containing e is gC. And any e ∈ pC is
noticed in any minimal (Θ, σ)-stable Levi containing
it.

Criterion:

Lemma 1 (N). Retain the above notations. Then
a nilpotent element e in pC is noticed if and only
if dim g(0)

C
∩ kC = dim g(2)

C
∩ pC.

Theorem [N 1997]. For any triple (gC, q, w),
where w ⊆ u∩pC is a certain L∩KC- module with a
dense orbit, there exists a sl2 normal triple (x, e, f)
such that e is noticed, q is the Jacobson-Morozov for
(x, e, f) and w = g2

C
∩ pC.

( Definition of w is technical refer to paper )

Classification Theorem [N 1997].

There is a 1-1 correspondence between KC- nilpo-
tent orbits on pC and KC-classes of certain triples
(l, q

l
, w

l
)

For details see:
(N.) Nilpotent Orbits and Theta-Stable Parabolic
Subalgebras AMS Representation Theory Volume 2
Pages 1-32 (1998).
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What Failed?

1. Distinguished nilpotent orbits are even. There
are non-even noticed nilpotent orbits.

2. Distinguished parabolic subalgebras are defined
by: dim l = dim u

[u,u]

The obvious extension dim l ∩ kC = dim
u∩pC

[u∩kC ,u∩pC ]

does not work. There are noticed nilpotent elements
whose theta-stable Jacobson-Morozov parabolic sub-
algebras do not satisfy the above formula.
We shall give the following example.

Let g be sl(7, R) . Then gC = sl(7, C), kC = so(7, C),
and pC is the space of 7× 7 complex symmetric ma-
trices. The Cartan involution θ is defined as θ(X) =
−XT for X ∈ g. Let

H =



3 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −3 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 0


and
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E =



0
√

3 0 0 0 0 0
0 0 2 0 0 0 0

0 0 0
√

3 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


Choose F = ET . Then θ(H) = −H , θ(E) = −F .
Hence (H, E, F ) is a KS-triple, and x = i(E − F )
is in kC. In fact under the Kostant-Sekiguchi map
(H, E, F ) corresponds to a normal triple (x, e, f),
with e = 1

2(E + F + iH) and f = 1
2(E + F − iH).

A simple computation shows that dim g(0)
C
∩ kC =

dim g(2)
C
∩ pC = 5. Hence the triple (x, e, f) is no-

ticed.

From the theory of the classification of the real nilpo-
tent orbits of sln and by Sekiguchi

GC.e = GC.E,

and the triple (x, e, f) can be associated to the par-
tition [4, 2, 1] of 7 and the corresponding weighted
Dynkin diagram is

2 0 1 1 0 2
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o o o o o o

One sees that

dim g(1)
C

= 4, dim g(1)
C
∩ kC = dim g(1)

C
∩ pC = 2.

But

dim[g(1)
C
∩ kC, g(1)

C
∩ pC] = 3

So dim l ∩ kC = 5

while

dim
u∩pC

[u∩kC ,u∩pC ] = dim(g(1)
C
∩ pC ⊕

g
(2)
C ∩pC

[g
(1)
C ∩kC ,g

(1)
C ∩pC ]

) = 4
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It turns out the formula works for Jacobson-Morozov
parabolic subalgebras attached to even noticed nilpo-
tent orbits.

Theorem 1 (N). Let e be an even nilpotent ele-
ment of pC. Let q be a θ-stable Jacobson-Morozov
parabolic subalgebra of e relative to a triple (x, e, f)
defined as above. Then q = l ⊕ u and dim l ∩ kC

= dim
u∩pC

[u∩kC ,u∩pC ] if and only if e is noticed.

Proof. We may assume that q is defined as above.
Let u′ =

⊕
i≥4

g(i)
C

. Then

dim l ∩ kC = dim g(0)
C
∩ kC,

while

dim g(2)
C
∩ pC = dim u ∩ pC - dim u′ ∩ pC.

By definition we have

[u ∩ kC, u ∩ pC] ⊂ u′ ∩ pC.

By the representation theory of sl2,

if z ∈ g(i)
C
∩ pC and i ≥ 4 then

z = [e, z′] for some z′ in g(i−2)
C
∩ kC ⊂ u ∩ kC.

Hence

u′ ∩ pC ⊂ [u ∩ kC, u ∩ pC].
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The conclusion follows at once.

For exceptional Lie algebras one obtains the follow-
ing:

Proposition 1 (N). Let gC be an exceptional sim-
ple complex Lie algebra. Let q = l⊕u be a θ-stable
Jacobson-Morozov parabolic subalgebra of e rela-
tive to a normal triple (x, e, f) defined as above.

If e is noticed then dim l ∩ kC = dim
u∩pC

[u∩kC ,u∩pC ].

Proof. (Use Djoković’s data)

3. The prehomogeneous space w helps deal with the
following cases:

KC
.e←→ (l, q

l
, w1

l
)

KC
.e′ ←→ (l, q

l
, w2

l
)
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A connection with the work of E. Sommers

Let Ge
C

centralizer of e in GC. Ge
C

is not connected
in general. Often it is required to compute the finite
group

A(e) =
Ge

C

(Ge
C
)◦

where (Ge
C
)◦ is the identity component.

E. Sommers (1997) gave a unified description of the
conjugacy classes of A(e).

A pseudo-Levi subalgebra l of gC is defined to be the
centralizer in gC of a semisimple element z of GC.

A nilpotent element e of gC is called distinguished
if the conditions x ∈ gC semisimple and [x, e] = 0
imply that x is in the center of gC.

Theorem 2. (Sommers). There is a bijection Φ
between GC conjugacy classes of pairs (l, e), where
l is a pseudo-Levi subalgebra and e is a distin-
guished nilpotent in l, and GC conjugacy classes
of pair (e, c̄), where e is a nilpotent element in gC
and c̄ is a conjugacy class of A(e).

In fact (e, 1) always goes to the Bala-Carter Levi l.

[Sommers] Nilpotent Orbits and the Affine Flag
Manifold. PhD. thesis MIT Sept 1997.
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We have extended Sommers’s result to reductive real
Lie groups.

Let e be a nilpotent element in pC and

Ak(e) =
Ke

C
(Ke

C)◦
. Give a unified description of

the elements of Ak(e).

A pseudo-Levi subalgebra l of gC is said to be ellip-
tic if it is the centralizer in gC of an elliptic element
of KC.

A nilpotent element e of l ∩ pC is called noticed if
the conditions z ∈ l ∩ kC semisimple and [z, e] = 0
imply that z is in the center of l.

Theorem 3. (King, N). There is a one to one
correspondence between KC-conjugacy classes of
pairs (e, z̄), where e is a nilpotent in pC, z̄ ∈ Ak(e)
and KC-conjugacy classes of triples (l, ql, w) where
l is an elliptic pseudo-Levi subalgebra in which e
is noticed, ql is a noticed parabolic of l for e, and
w is a certain prehomogeneous space.

In fact (e, 1) always goes to this (Θ, σ)-stable Levi l
in our extension of the Bala-Carter classification .

[King &N] Component Groups of Centralizers
of Nilpotents in Complex Symmetric Spaces Jour-
nal of Algebra, (232) 94-125, 2000.



17

Richardson’s Theorem fails for symmetric spaces

Maintaining the above notations, a straightforward
extension of the Richardson’s Theorem would be:

Let q be a θ-stable parabolic subalgebra of gC with
Lie group Q ⊆ GC. Does Q ∩ KC admit an open
dense orbit in u ∩ pC?

This is not true in general. Here is a counter-example
due to Patrice Tauvel.

Let g = so(4, 4). Then we can represent g by the
following Vogan diagram:

gα3

gα1 wα2
�������

??
??

??
?

gα4

where α2 is the unique non-compact simple root and

k = so(4)⊕ so(4)

g is of inner-type.
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kC = CHα1 ⊕ CHα2 ⊕ CHα3 ⊕ CHα4 ⊕ CX±α1⊕
CX±α3 ⊕ CX±α4 ⊕ CX±(α1+2α2+α3+α4)

pC = CX±α2⊕CX±(α1+α2)⊕CX±(α2+α3)⊕CX±(α2+α4)⊕
CX±(α1+α2+α3)⊕CX±(α1+α2+α4)⊕CX±(α2+α3+α4)⊕
CX±(α1+α2+α3+α4)

Let q be the Borel subalgebra defined by the above
system of simple roots then clearly q is θ-stable for

q = (q ∩ kC)⊕ q ∩ pC)

dim(q ∩ kC) = dim(q ∩ pC) = 8

u ∩ pC = q ∩ pC

Let z ∈ u ∩ pC. Then:

[z, X(α1+2α2+α3+α4)] = 0

Hence dim[z, q ∩ kC] ≤ 7 < dim(u ∩ pC).

Consequently [z, q ∩ kC] 6= u ∩ pC.
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Two good cases

Let (x, e, f) to be a normal sl2-triple with x ∈ ik
e and f ∈ pC. Let q be the θ-stable Jacobson-
Morozov parabolic subalgebra of e relative to the
triple (x, e, f).

Retain the above notations. Let Q be the connected
subgroups of GC with Lie algebra q.

Proposition 2. Q ∩ KC.e is a dense open subset
of

⊕
i≥2

g(i)
C
∩ pC. Moreover if e is even, that is g(i)

C

= 0 for i odd, then Q ∩KC
.e = u ∩ pC.

Proof. The map z → Adz(e) is a morphism from
Q∩KC to

⊕
i≥2

g(i)
C
∩pC and its differential is the map:

− ade : q ∩ kC →
⊕
i≥2

g(i)
C
∩ pC.

This map is surjective. Thus the given morphism is
dominant and separable. Since the image of such a
map is open in its closure, the Q ∩KC-orbit of e is

a non-empty open dense subset of
⊕
i≥2

g(i)
C
∩ pC.

If e is even then
⊕
i≥2

g(i)
C
∩ pC = u ∩ pC. Hence,

Q ∩KC
.e = u ∩ pC.

�
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Borel-de Siebenthal parabolic subalgebras

A complex Lie algebra gC is said to be graded if
gC =

⊕∞
k=−∞ gk

C
where gk

C
is a vector subspace of gC

and [gi
C
, gj

C
] = gi+j

C
for all integers i and j.

We shall need the following theorem of Vinberg:

Theorem 4. Let GC be a complex semisimple Lie
group with graded Lie algebra gC =

⊕
k gk

C
, and let

G0
C

be the analytic subgroup of GC with Lie algebra

g0
C
. Then the adjoint action of G0

C
on g1

C
has only

finitely many orbits. Hence one of them must be
open.

�

A proof of the uniqueness and denseness of such an
open orbit is found in Knapp’s Lie Groups Beyond
an Introduction Proposition 10.1.

Let g be of inner-type, that is rank(k) = rank(g) and
∆ a Vogan set of simple roots of gC. Then ∆ can
be partitioned into two disjoint sets: ∆kC

the set of
compact roots and ∆pC

the set of imaginary non-
compact roots. Let αp be a non-compact imaginary

simple root such that if β =
l∑

k=1

ckαk is a positive

root then 0 ≤ cp ≤ 2. Thus,

gC = g−2
C
⊕ g−1

C
⊕ g0

C
⊕ g1

C
⊕ g2

C
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is a grading of gC where gi
C

is the sum of the roots
spaces for roots whose coefficient of αp is i in an
expansion in terms of simple roots in ∆. Define l =
g0

C
and u = g1

C
⊕ g2

C
. Then q = l + u is a maximal

parabolic subalgebra of gC and is called a Borel-de
Siebenthal parabolic subalgebra. Furthermore, pC =
g1

C
⊕ g−1

C
. Denote by Q the connected subgroup of

GC with Lie algebra q. Then u ∩ pC = g1
C

is a Q ∩
KC-module under the adjoint action which we shall
identify with its diffrential ad : q ∩ kC → u ∩ pC

Proposition 3. Q∩KC has a unique open dense
orbit in u ∩ pC.

Proof. Observe that q ∩ kC = g0
C
⊕ g2

C
and that g2

C
acts trivially on g1

C
. Therefore, the adjoint action of

q ∩ kC on g1
C

is equivalent to that of g0
C

on g1
C
. The

proposition follows from Vinberg’s theorem.
�
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Variations on a theorem of Peter Trapa

We say that a nilpotent orbit Ok of KC on pC is a
Richardson orbit if there exists a θ-stable parabolic
subalgebra q of gC with Levi decomposition q = l⊕u
such that Ok is the unique dense orbit admitted by
the saturation of KC on u∩pC. That is Ok∩(u∩pC)
is open and dense in u ∩ pC. In the case where GC
is a classical complex Lie group Peter Trapa proves
the following theorem:

Theorem 5. Fix a special nilpotent orbit O of
GC on gC. Then there exists a real form G such
that some irreducible component of O ∩ pC is a
Richardson orbit of KC on the nilpotent cone of
pC.

Source: (P. Trapa) Richardson Orbit for Real
Classical Groups To appear in Journal of Algebra.

We shall see that the above theorem does not extend
to exceptional groups. It fails for the minimal orbits
of E7 and E8.

Definition 1. A nilpotent orbit of the real group
G on g is a Richardson orbit if its image under the
Kostant-Sekiguchi correspondence is a Richardson
orbit as defined above.
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More of Trapa’s results

Using the explicit computation of Richardson orbits
in the classical cases, Trapa establishes the following:

Theorem 6. For the classical groups, the annihi-
lator of any module of the form Aq(λ) is explicitly
computable.

The definition of Aq(λ) is found in Knapp and Vogan
book “Cohomological Induction and Unitary Repre-
sentations”. (Aq is related to a real form.)

Using the preceding theorem Trapa gives new ex-
amples of simple highest weight modules with irre-
ducible associated varieties via the following:

Theorem 7. Fix GC complex semisimple (not nec-
essarily classical). Suppose I is the annihilator
of an Aq module for some real form G of GC.
If AnnU(gC)(L(w1)) = I, then AV (L(w)) is irre-
ducible , i.e. is the closure of a unique orbital
variety for gC. If GC is classical, this orbital va-
riety is effectively computable
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Tauvel’s result

Definition 2. q is a polarization of gC at e if

2dimq = dimge
C

+ dimgC and B(e, [q, q]) = 0

where ge
C

is the centralizer of e in gC and B is the
Killing form of gC.

The next proposition could be seen as a version of
Richardson’s theorem for complex symmetric spaces.

Proposition 4. (P. Tauvel). Maintaining the
above notations, suppose that there exists z in pC
such that q is a polarization of gC at z. Then

i. There exists a unique KC-nilpotent orbit Ok

in pC such that S = u∩pC∩Ok is open and dense
in u ∩ pC.

ii. S is a Q ∩KC-orbit.

iii. if x ∈ S then [x, kC∩q] = u∩pC, [x, pC∩q] =
u ∩ kC and q is a polarization of gC at x.

Source: (P. Tauvel), Quelques résultats sur les
algèbres de Lie symétriques, Bull. Sci. math. 125
8 (2001), 641-665.
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If e ∈ pC and GC · e is an even orbit then the
Jacobson-Morozov parabolic subalgebra of e is a po-
larization of gC at e.

This is due to the fact that :

2 dim q = dim gC + dim g0
C

, dim ge
C

= dim g0
C

+ dim g1
C

with B(e, gi
C
) = {0} if i 6= −2.

Remember Trapa’s Theorem:

Let gC be a classical semisimple complex Lie algebra.
Fix a special nilpotent orbit O of GC on gC. Then
there exists a real form G such that some irreducible
component of O∩ pC is a Richardson orbit of KC on
the nilpotent cone of pC.

We shall now try to extend this result to the ex-
ceptional cases. Trapa’s proof used the fact that in
the classical case nilpotent orbits are parametrized
by signed Young tableaux. This is not available
for exceptional groups. However, labelled Dynkin
Diagrams from the work of Dynkin and Kostant,
and information from the work of Bala, Carter and
Djoković is used instead.
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The Exceptional Cases

From the previous remarks we need to consider only
non-even special orbits. Since there are none in G2

we conclude that Trapa’s result extends to G2.

Definition 3. An orbitO of GC on gC is polarizable
if for some irreducible component of KC · e of O∩pC
there exists a θ-stable parabolic subalgebra q of gC
such that q is a polarization of gC at e.

Strategy

1. Find all special polarizable non-even nilpotent
orbits of the other complex exceptional simple Lie
groups. In this case, Tauvel’s result implies Trapa’s
result.

2. It turns out that the non-polarizable special nilpo-
tent orbits have low dimension. Let O be such an
orbit, using information from Djoković’s classifica-
tion we were able either to find an appropriate q or
to show that for all q = l⊕u, we can find e ∈ u∩pC
such that dim KC · e > dimO ∩ pC.
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ALGORITHMIC SCHEME

Input:
1. Type of simple Lie algebra g (inner-type)
2. A Θ-stable system of roots ∆1 (Vogan)

Computation:
3. n = # of non equivalent Θ-stable system of roots

{n = |W (GC)

W (KC)|}
4. Create list L = {∆1 . . . ∆n}
{∆i = Sβ(∆i−1)} β’s non-compact imaginary roots.
5. Initialize storage Q
6. For each ∆i ∈ L do

For each subset S ⊂ ∆i do
Create the parabolic q associated with S
If q 6∈ Q then Insert (Q, q)

Output:
7. Q consists of distinct q’s.

Source: (N.) Computing theta-stable parabolic sub-
algebras using LiE. Lectures Notes in Computer
Science, Springer-Verlag Volume 3039 (335-342) 2004.

It contains a complete description, implementation
details in LiE (pidgin), proof of correctness and com-
plexity.
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What happens when g is not of inner-type?

The algorithm is essentially the same. But the im-
plementation will be more complex.

We only had to deal with the real form EIV of E6

for the minimal orbit case. The computation is quite
tractable for there is only one class of roots system of
interest since that real form does not have any non-
compact imaginary roots. It turns out that in this
case one can find a parabolic q = l⊕ u such that

u ∩ pC = C(Xα1+α2+2α3+2α4+α5+α6 −Xα1+α2+α3+2α4+2α5+α6)
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Results

Trapa’s Theorem extends to G2, F4 and E6. It fails
for the minimal orbit of E7 and for several low di-
mensional orbits in E8.

Theorem 8. (N.) Maintaining our previous no-
tations, let gC be a simple complex Lie algebra
other than E8 and fix a non-minimal special nilpo-
tent orbit O of GC on gC. Then there exists a real
form G such that some irreducible component of
O ∩ pC is a Richardson orbit of KC on the nilpo-
tent cone of pC.

Source: (N.) Some remarks on Richardson Or-
bits in Complex Symmetric spaces. Preprint (2004)
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Conlusion

The last result has the flavor of a corresponding result
for Admissible nilpotent orbits . Such orbits were
classified by T. Ohta (1990 complete), and Schwartz
(1987, partial ) for classical groups. Using some facts
from Ohta’s paper and Djoković’s classification we
classified the admissible orbits for exceptional real
Lie groups.

Sources:

[N]Classification of Admissible Nilpotent Orbits
in Simple Exceptional Real Lie Algebras of Inner
type. AMS Journal of Representation Theory 5 2001
(455-493 )

[N] Classification of Admissible Nilpotent Orbits
in the Simple Real Lie Algebras E6(6) and E6(−26).
AMS Journal of Representation Theory 5 2001 (494-
502)

If G is a split real form of a classical GC then all
real orbits that come from a special ( Lusztig’s sense)
complex orbits are admissible (Nevins). However this
fails for two orbits in E8(8) and for one orbit in E7(7).
Although it is true that at least one of such real orbits
will be admissible.

More conceptual arguments for these prob-
lems might be very enlightening.


