Homomorphisms between Specht modules and Weyl modules

Andrew Mathas (Joint work with Sinéad Lyle)

A.Mathas@maths.usyd.edu.au

University of Sydney

The Hecke algebra

Fix a ring R and an integer $n \ge 1$. Let q be an *invertible* element of R. The Iwahori–Hecke algebra $\mathscr{H}_n = \mathscr{H}_q(\mathfrak{S}_n)$ is the unital associative R algebra with generators

 T_1,\ldots,T_{n-1}

together with the relations $(T_j + q)(T_j - 1) = 0$

and the braid relations $T_{j+1}T_jT_{j+1} = T_jT_{j+1}T_j$ $T_jT_k = T_kT_j$, for |j - k| > 1

...first meaning of the definition

The symmetric group \mathfrak{S}_n has presentation given by the diagram

So, $\mathfrak{S}_n = \langle t_1, \dots, t_{n-1} \rangle$ with relations:

 $t_i^2 = 1,$ $t_j t_{j+1} t_j = t_{j+1} t_j t_{j+1}$ and $t_j t_k = t_k t_j$, for |j - k| > 1.

In contrast, $\mathscr{H}_n = \langle T_1, \dots, T_{n-1} \rangle$ with relations $(T_i - q)(T_q + 1) = 0$ together with the braid relations.

Hence, $\mathscr{H}_n \cong R\mathfrak{S}_n$, if q = 1.

Motivation

Suppose that $q = p^k$ is a prime power (*p* prime). Let \mathbb{F}_q be the finite field with *q* elements.

Define:

 $G = \operatorname{GL}_n(q) = \text{ invertible } n \times n \text{ matrices}/\mathbb{F}_q$ $B = \left\{ \begin{pmatrix} * & * & * \\ 0 & \ddots & * \\ 0 & 0 & * \end{pmatrix} \in G \right\}$ = upper triangular matrices in G $1_B = \text{ trivial representation of } B$ $\operatorname{Ind}_B^G(1_B) = \text{ induced representation of } G$

...an amazing theorem Let $H_{G,B} = \operatorname{End}_G \left(\operatorname{Ind}_B^G(1_B) \right)$, an R-algebra. *Assume* that $R = \mathbb{C}$.

We have the following:

- $\mathbb{C}\mathfrak{S}_n \cong \mathscr{H}_1 \stackrel{!!}{\cong} \mathscr{H}_q \stackrel{!}{\cong} H_{G,B}$
- There is a 1-1 correspondence $\chi \leftrightarrow \chi_q$ between the irreducible representations of \mathfrak{S}_n and the irreducible constituents of $\mathrm{Ind}_B^G(1_B)$.
- There is a polynomial $d_{\chi}(x)$, for $\chi \in \operatorname{Irr} \mathfrak{S}_n$, such that: $d_{\chi}(1) = \dim \chi$ and $d_{\chi}(q) = \dim \chi_q$ for all $\operatorname{GL}_n(q) \parallel l$

A basis

- If $w \in \mathfrak{S}_n$ then write $w = t_{i_1} \dots t_{i_k}$, with k minimal.
- Define $T_w = T_{i_1} \dots T_{i_k}$. Then T_w is independent of the choice of i_1, \dots, i_k .
- Further, $\{T_w : w \in \mathfrak{S}_n\}$ is a basis of \mathscr{H} .
- The Hecke algebra \mathscr{H}_n is semisimple iff

$$\prod_{m=1}^{n} (1 + q + \dots + q^{m-1}) \neq 0.$$

• So, \mathscr{H} need not be semisimple even if $R = \mathbb{C}$!

Representation theory

- Irreducible representations of \mathfrak{S}_n are indexed by partitions $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge 0)$, with $|\lambda| = \sum_i \lambda_i = n$.
- As we might hope, the same is true for \mathscr{H} .
- To describe this we need some combinatorics.

Tableaux combinatorics

Fix a partition $\lambda = (\lambda_1 \ge \lambda_2 \ge ...)$ of *n*. We can think of λ as being an array of boxes. For example, if $\lambda = (3, 2, 2)$ then

A λ -tableau is a filling of this diagram with the numbers $1, \ldots, n$. For example,

are all (3, 2, 2)-tableau.

...tableaux

The symmetric group \mathfrak{S}_n acts on the set of tableaux by permuting the entries.

Let t^{λ} be the λ -tableau with the numbers $1, \ldots, n$ entered in order along the rows:

$${f t}^{\lambda} = {f 1 & 2 & 3 \ 4 & 5 \ 6 & 7 \ }$$

If t is a λ -tableau we let $d(t) \in \mathfrak{S}_n$ be the *unique* permutation such that $\mathfrak{t} = \mathfrak{t}^{\lambda} \cdot d(\mathfrak{t})$. **Example** If $\mathfrak{t} = \frac{1 \ 3 \ 4}{2 \ 6}$ then $d(\mathfrak{t}) = (2, 3, 4)(5, 6)$.

Young subgroups

To each partition $\lambda = (\lambda_1, \dots, \lambda_k$ we can also associate a Young subgroup

$$\mathfrak{S}_{\lambda} = \mathfrak{S}_{\lambda_1} \times \cdots \times \mathfrak{S}_{\lambda_k} \hookrightarrow \mathfrak{S}_n.$$

Thus, \mathfrak{S}_{λ} is the row stabilizer of \mathfrak{t}^{λ} . To construct representations we need the following element:

$$m_{\lambda} = \sum_{w \in \mathfrak{S}_{\lambda}} T_w$$

In fact, $m_{\lambda}\mathscr{H} = \operatorname{Ind}_{\mathscr{H}_{\lambda}}^{\mathscr{H}}(1_{\lambda})$

A cellular basis

A λ -tableau is standard if its entries increase along the rows and down the columns. For example:

If **s** and **t** are standard λ -tableaux define

 $m_{\mathfrak{s}\mathfrak{t}} = T_{d(\mathfrak{s})^{-1}} m_{\lambda} T_{d(\mathfrak{t})} \quad \in \mathscr{H}.$

Theorem (Murphy) { $m_{\mathfrak{st}} : \mathfrak{s}, \mathfrak{t} \text{ standard } \lambda - \mathfrak{tableaux}$ } is a cellular basis of \mathscr{H} .

Cellular algebras (Graham-Lehrer)

In essence, the *cellular* basis $\{m_{\mathfrak{st}}\}$ determines the representation theory of \mathscr{H} . (C1) The map $*: m_{\mathfrak{st}} \mapsto m_{\mathfrak{ts}}$ is an anti-isomorphism. (C2) Given \mathfrak{t} and $h \in \mathscr{H}$ there exist $r_{\mathfrak{tv}}^h \in R$ such that

$$m_{\mathfrak{st}}h \equiv \sum_{\mathfrak{v}\in \mathrm{Std}(\lambda)} r^h_{\mathfrak{tv}}m_{\mathfrak{sv}} \pmod{\mathrm{higher terms}}$$

Importantly, r_{tv}^h is *independent* of s !

(C1) and (C2) combined give:

(C2)' $hm_{\mathfrak{sl}} \equiv \sum_{\mathfrak{v}\in\mathrm{Std}(\lambda)} r^h_{\mathfrak{sv}} m_{\mathfrak{vl}} \pmod{\mathrm{higher terms}}$

Specht modules

The Specht module $S(\lambda)$ is the free *R*-module with basis $\{m_t : t \in \text{Std}(\lambda)\}$ and with \mathcal{H} -action:

$$m_{\mathfrak{t}}h = \sum_{\mathfrak{v}\in\mathrm{Std}(\lambda)} r^h_{\mathfrak{tv}}m_{\mathfrak{v}}.$$

Importantly, $S(\lambda)$ has a natural bilinear form \langle , \rangle . To define \langle , \rangle it is enough to specify $\langle m_t, m_u \rangle$.

 $m_{\mathfrak{st}}m_{\mathfrak{u}\mathfrak{v}} \equiv \langle m_{\mathfrak{t}}, m_{\mathfrak{u}} \rangle m_{\mathfrak{sv}} \pmod{\operatorname{higher terms}}$

This equation defines a bilinear form on $S(\lambda)$.

Simple modules

The bilinear form \langle , \rangle is associative in the sense that $\langle xh, y \rangle = \langle x, yh^* \rangle$, for all $x, y \in S(\lambda), h \in \mathcal{H}$. $\operatorname{rad}S(\lambda) = \{ x \in S(\lambda) : \langle x, y \rangle = 0 \text{ for all } y \in S(\lambda) \}$ is an \mathcal{H} -submodule of $S(\lambda)$. Define $D(\lambda) = S(\lambda) / \operatorname{rad} S(\lambda)$. **Theorem** Suppose R is a field. Then $\{ D(\lambda) : D(\lambda) \neq 0 \}$ is a complete set of pairwise non–isomorphic irreducible \mathscr{H} –modules. Define $e = \min \{ k > 0 : 1 + q + \dots + q^{k-1} = 0 \}.$ Dipper and James showed that $D(\lambda) \neq 0$ if and only

if $\lambda_i - \lambda_{i+1} < e$ for all $i \ge 1$.

Specht module homomorphisms

Theorem

Let λ and μ be partitions and assume that $q \neq -1$. Suppose that $\lambda_1 + \cdots + \lambda_s = \mu_1 + \cdots + \mu_s$. Then

 $\operatorname{Hom}_{\mathscr{H}_n} \left(S(\mu), S(\lambda) \right) \cong \operatorname{Hom}_{\mathscr{H}_{n-m}} \left(S(\mu^t), S(\lambda^t) \right) \otimes \operatorname{Hom}_{\mathscr{H}_m} \left(S(\mu^b), S(\lambda^b) \right).$

where $m = |\lambda^b|$. Pictorially, this can be viewed as follows:

Idea of proof

Lemma Suppose that $q \neq -1$. Then Hom_{\mathscr{H}} $(M(\mu), S(\lambda))$ is free as an *R*-module with basis { $\varphi_T : T$ semistandard of type μ }.

Basically, $\varphi_T(m_\mu h) = \sum_{\mathfrak{t}\sim_\mu T} m_\mathfrak{t} h.$

Example

Let $\lambda = (5, 4, 3, 3, 2)$ and $\mu = (4, 4, 4, 2, 2, 1)$. The semistandard λ -tableaux of type μ are:

We take s = 3.

...idea of proof

From the combinatorics and the last lemma we find

 $\operatorname{Hom}_{\mathscr{H}_n} \left(M(\mu), S(\lambda) \right) \cong \\ \operatorname{Hom}_{\mathscr{H}_{n-m}} \left(M(\mu^t), S(\lambda^t) \right) \otimes \operatorname{Hom}_{\mathscr{H}_m} \left(M(\mu^b), S(\lambda^b) \right),$

via $\varphi_T \mapsto \varphi_{T^t} \otimes \varphi_{T^b}$. On the other hand, we have a surjection

 $M(\mu) \to S(\mu).$

It is now *just* a matter of "lifting" and "pushing" Specht module maps through this surjection. This takes a fair amount of work, but is not so bad... The proof yields an explicit bijection.

Generalizations — I

Let \mathscr{S} be the *q*-Schur algebra.

We have exactly the same result but with Specht modules replaced with Weyl modules:

Theorem Suppose that $\lambda_1 + \cdots + \lambda_s = \mu_1 + \cdots + \mu_s$. For any *R* and *q* we have

 $\operatorname{Hom}_{\mathscr{S}} \left(\Delta(\mu), \Delta(\lambda) \right) \cong \operatorname{Hom}_{\mathscr{S}} \left(\Delta(\mu^{t}), \Delta(\lambda^{t}) \right) \otimes \operatorname{Hom}_{\mathscr{S}} \left(\Delta(\mu^{b}), \Delta(\lambda^{b}) \right).$

Generalizations — **II**

Theorem (Donkin) Suppose that *R* is a field and that $\lambda_1 + \cdots + \lambda_s = \mu_1 + \cdots + \mu_s$. Then $\operatorname{Ext}_{\mathscr{S}}^{k}\left(\Delta(\mu),\Delta(\lambda)\right)\cong$ $\bigoplus \operatorname{Ext}^{i}_{\mathscr{S}}(\Delta(\mu^{t}), \Delta(\lambda^{t})) \otimes \operatorname{Ext}^{j}_{\mathscr{S}}(\Delta(\mu^{b}), \Delta(\lambda^{b})).$ i+j=k**Theorem** (Donkin) Suppose that R is a field, e > 2 and that $\lambda_1 + \cdots + \lambda_s = \mu_1 + \cdots + \mu_s$. Then $\operatorname{Ext}_{\mathscr{H}}^{k}\left(S(\mu),S(\lambda)\right)\cong$ $\bigoplus \operatorname{Ext}^{i}_{\mathscr{H}}(S(\mu^{t}), S(\lambda^{t})) \otimes \operatorname{Ext}^{j}_{\mathscr{H}}(S(\mu^{b}), S(\lambda^{b}))$ i+j=kfor $0 \le k \le e - 2$.

Generalizations — III

Theorem (CPS,Donkin) Suppose that *R* is a field and that $\lambda_1 + \cdots + \lambda_s = \mu_1 + \cdots + \mu_s$. Then $\operatorname{Ext}_{\mathscr{S}}^k (L(\mu), \Delta(\lambda)) \cong$

 $\bigoplus_{i+j=k} \operatorname{Ext}^{i}_{\mathscr{S}}(\Delta(\mu^{t}), L(\lambda^{t})) \otimes \operatorname{Ext}^{j}_{\mathscr{S}}(\Delta(\mu^{b}), L(\lambda^{b})).$

Theorem (Donkin, Lyle-M.) Suppose that *R* is a field, e > 2, and that $\lambda_1 + \dots + \lambda_s = \mu_1 + \dots + \mu_s$. Then $\operatorname{Ext}^k_{\mathscr{H}} (S(\mu), D(\lambda)) \cong$

 $\bigoplus_{i+j=k} \operatorname{Ext}^{i}_{\mathscr{H}}(S(\mu^{t}), D(\lambda^{t})) \otimes \operatorname{Ext}^{j}_{\mathscr{H}}(S(\mu^{b}), D(\lambda^{b}))$

for $0 \le k < e - 2$.

Generalizations — **IV**

If V is an \mathscr{S} -module let $\operatorname{Ch} V = \sum_{\nu} (\dim V_{\nu}) e^{\nu}$ be its formal character. So $\operatorname{Ch} \Delta(\lambda)$ is given by the Weyl character formula.

$$\operatorname{Ch} L(\lambda) = \sum_{\substack{\mu \\ k \ge 0}}^{\mu} (-1)^k \operatorname{dim} \operatorname{Ext}_{\mathscr{S}}^k (\Delta(\mu), L(\lambda)) \operatorname{Ch} \Delta(\mu).$$

Following CPS define $Q_{\mu\lambda}(t) \in \mathbb{N}_0[t]$ by

$$Q_{\mu\lambda}(t) = \sum_{k\geq 0} \dim \operatorname{Ext}^{k}_{\mathscr{S}}(\Delta(\mu), L(\lambda)) t^{k}.$$

So Ch $L(\lambda) = \sum_{\mu} Q_{\mu\lambda}(-1) \operatorname{Ch} \Delta(\mu)$.

...generalizations — IV

From work of Varagnolo–Vasserot (and Leclerc–Thibon), it follows that $Q_{\mu\lambda}(t)$ is a (renormalized) inverse parabolic Kazhdan–Lusztig polynomial. Let $d_{\mu\lambda}(t)$ be the corresponding parabolic Kazhdan–Lusztig polynomials.

Then:

• (Varagnolo–Vasserot) $d_{\mu\lambda}(1) = [\Delta(\mu) : L(\lambda)].$

• (Chuang–Miyachi–Tan) Suppose $\lambda_1 + \cdots + \lambda_s = \mu_1 + \cdots + \mu_s$. Then

 $d_{\mu\lambda}(t) = d_{\mu^t\lambda^t}(t)d_{\mu^b\lambda^b}(t).$