Homomorphisms between Specht modules and Weyl modules

Andrew Mathas
(Joint work with Sinéad Lyle)
A. Mathas@maths.usyd. edu. au

University of Sydney

The Hecke algebra

Fix a ring R and an integer $n \geq 1$.
Let q be an invertible element of R.
The Iwahori-Hecke algebra $\mathscr{H}_{n}=\mathscr{H}_{q}\left(\mathfrak{S}_{n}\right)$ is the unital associative R algebra with generators

$$
T_{1}, \ldots, T_{n-1}
$$

together with the relations

$$
\left(T_{j}+q\right)\left(T_{j}-1\right)=0
$$

and the braid relations

$$
\begin{aligned}
& T_{j+1} T_{j} T_{j+1}=T_{j} T_{j+1} T_{j} \\
& T_{j} T_{k}=T_{k} T_{j}, \quad \text { for }|j-k|>1
\end{aligned}
$$

...first meaning of the definition

The symmetric group \mathfrak{S}_{n} has presentation given by the diagram

So, $\mathfrak{S}_{n}=\left\langle t_{1}, \ldots, t_{n-1}\right\rangle \quad$ with relations:

$$
\begin{aligned}
& t_{i}^{2}=1, \\
& t_{j} t_{j+1} t_{j}=t_{j+1} t_{j} t_{j+1}
\end{aligned}
$$

and $t_{j} t_{k}=t_{k} t_{j}$, for $|j-k|>1$.
In contrast, $\mathscr{H}_{n}=\left\langle T_{1}, \ldots, T_{n-1}\right\rangle$ with relations
$\left(T_{i}-q\right)\left(T_{q}+1\right)=0$ together with the braid relations.
Hence, $\mathscr{H}_{n} \cong R \mathfrak{S}_{n}$, if $q=1$.

Motivation

Suppose that $q=p^{k}$ is a prime power (p prime). Let \mathbb{F}_{q} be the finite field with q elements.

Define:

$$
\begin{aligned}
G & =\mathrm{GL}_{n}(q)=\text { invertible } n \times n \text { matrices } / \mathbb{F}_{q} \\
B & =\left\{\left(\begin{array}{ccc}
* & * & * \\
0 & \ddots & * \\
0 & 0 & *
\end{array}\right) \in G\right\} \\
& =\text { upper triangular matrices in } G \\
1_{B} & =\text { trivial representation of } B \\
\operatorname{Ind}_{B}^{G}\left(1_{B}\right) & =\text { induced representation of } G
\end{aligned}
$$

...an amazing theorem

Let $H_{G, B}=\operatorname{End}_{G}\left(\operatorname{Ind}_{B}^{G}\left(1_{B}\right)\right)$, an R-algebra.
Assume that $R=\mathbb{C}$.
We have the following:

- $\mathbb{C S}_{n} \cong \mathscr{H}_{1} \stackrel{!!}{\cong} \quad \mathscr{H}_{q} \stackrel{!}{\cong} H_{G, B}$
- There is a 1-1 correspondence $\chi \leftrightarrow \chi_{q}$ between the irreducible representations of \mathfrak{S}_{n} and the irreducible constituents of $\operatorname{Ind}_{B}^{G}\left(1_{B}\right)$.
- There is a polynomial $\mathbf{d}_{\chi}(x)$, for $\chi \in \operatorname{Irr} \mathfrak{S}_{n}$, such that: $\mathrm{d}_{\chi}(1)=\operatorname{dim} \chi$ and $\mathrm{d}_{\chi}(q)=\operatorname{dim} \chi_{q}$ for all $\mathbf{G L}_{n}(q)!!!$

A basis

- If $w \in \mathfrak{S}_{n}$ then write $w=t_{i_{1}} \ldots t_{i_{k}}$, with k minimal.
- Define $T_{w}=T_{i_{1}} \ldots T_{i_{k}}$. Then T_{w} is independent of the choice of i_{1}, \ldots, i_{k}.
- Further, $\left\{T_{w}: w \in \mathfrak{S}_{n}\right\}$ is a basis of \mathscr{H}.
- The Hecke algebra \mathscr{H}_{n} is semisimple iff

$$
\prod_{m=1}^{n}\left(1+q+\cdots+q^{m-1}\right) \neq 0
$$

- So, \mathscr{H} need not be semisimple even if $R=\mathbb{C}$

Representation theory

- Irreducible representations of \mathfrak{S}_{n} are indexed by partitions $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0\right)$, with $|\lambda|=\sum_{i} \lambda_{i}=n$.
- As we might hope, the same is true for $\mathscr{H}^{\mathscr{H}}$.
- To describe this we need some combinatorics.

Tableaux combinatorics

Fix a partition $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots\right)$ of n. We can think of λ as being an array of boxes. For example, if $\lambda=(3,2,2)$ then

A λ-tableau is a filling of this diagram with the numbers $1, \ldots, n$. For example,

1	2	3
4	5	
6	7	

1	2	4
3	5	
6	7	

\[

\]

and

1	4	7
2	5	
3	6	

are all (3, 2, 2)-tableau.

...tableaux

The symmetric group \mathfrak{S}_{n} acts on the set of tableaux by permuting the entries.
Let t^{λ} be the λ-tableau with the numbers $1, \ldots, n$ entered in order along the rows:

If \mathfrak{t} is a λ-tableau we let $d(t) \in \mathfrak{S}_{n}$ be the unique permutation such that $\mathfrak{t}=\mathrm{t}^{\lambda} \cdot d(\mathrm{t})$.

then $d(\mathfrak{t})=(2,3,4)(5,6)$.

Young subgroups

To each partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right.$ we can also associate a Young subgroup

$$
\mathfrak{S}_{\lambda}=\mathfrak{S}_{\lambda_{1}} \times \cdots \times \mathfrak{S}_{\lambda_{k}} \hookrightarrow \mathfrak{S}_{n} .
$$

Thus, \mathfrak{S}_{λ} is the row stabilizer of \mathfrak{t}^{λ}. To construct representations we need the following element:

$$
m_{\lambda}=\sum_{w \in \mathfrak{G}_{\lambda}} T_{w}
$$

In fact, $m_{\lambda} \mathscr{H}=\operatorname{Ind}_{\mathscr{H} \lambda}^{\mathscr{H}}\left(1_{\lambda}\right)$

A cellular basis

A λ-tableau is standard if its entries increase along the rows and down the columns. For example:

If \mathfrak{s} and t are standard λ-tableaux define

$$
m_{\mathfrak{s t}}=T_{d(\mathrm{~s})^{-1}} m_{\lambda} T_{d(\mathrm{t})} \quad \in \mathscr{H} .
$$

Theorem (Murphy)
$\left\{m_{\mathfrak{s t}}: \mathfrak{s}, \mathfrak{t}\right.$ standard $\lambda-$ tableaux $\}$ is a cellular basis of \mathscr{H}.

Cellular algebras

In essence, the cellular basis $\left\{m_{\mathfrak{s t}}\right\}$ determines the representation theory of \mathscr{H}.
(C1) The map $*: m_{\mathfrak{s t}} \mapsto m_{\mathrm{ts}}$ is an anti-isomorphism.
(C2) Given \mathfrak{t} and $h \in \mathscr{H}$ there exist $r_{\mathfrak{t v}}^{h} \in R$ such that

$$
m_{\mathfrak{s t}} h \equiv \sum_{\mathfrak{v} \in \operatorname{Std}(\lambda)} r_{\text {tv }}^{h} m_{\mathfrak{s v}} \quad(\bmod \text { higher terms })
$$

Importantly, $r_{t 0}^{h}$ is independent of \mathfrak{s} !
(C1) and (C2) combined give:
$(\mathrm{C} 2)^{\prime} \quad h m_{\mathfrak{s t}} \equiv \sum_{\mathfrak{v} \in \operatorname{Std}(\lambda)} r_{\mathfrak{s v}}^{h} m_{\mathfrak{v t}} \quad(\bmod$ higher terms)

Specht modules

The Specht module $S(\lambda)$ is the free R-module with basis $\left\{m_{\mathfrak{t}}: \mathfrak{t} \in \operatorname{Std}(\lambda)\right\}$ and with \mathscr{H}-action:

$$
m_{\mathfrak{t}} h=\sum_{\mathfrak{v} \in \operatorname{Std}(\lambda)} r_{\mathfrak{t v}}^{h} m_{\mathfrak{v}} .
$$

Importantly, $S(\lambda)$ has a natural bilinear form \langle,$\rangle .$ To define \langle,$\rangle it is enough to specify \left\langle m_{\mathfrak{t}}, m_{\mathfrak{u}}\right\rangle$.

$$
m_{\mathfrak{s t}} m_{\mathfrak{u v}} \equiv\left\langle m_{\mathfrak{t}}, m_{\mathfrak{u}}\right\rangle m_{\mathfrak{s v}} \quad(\bmod \text { higher terms) }
$$

This equation defines a bilinear form on $S(\lambda)$.

Simple modules

The bilinear form \langle,$\rangle is associative in the sense that$ $\langle x h, y\rangle=\left\langle x, y h^{*}\right\rangle$, for all $x, y \in S(\lambda), h \in \mathscr{H}$.
$\operatorname{rad} S(\lambda)=\{x \in S(\lambda):\langle x, y\rangle=0$ for all $y \in S(\lambda)\}$ is an \mathscr{H}-submodule of $S(\lambda)$.

Define $D(\lambda)=S(\lambda) / \operatorname{rad} S(\lambda)$.
Theorem Suppose R is a field. Then $\{D(\lambda): D(\lambda) \neq 0\}$ is a complete set of pairwise non-isomorphic irreducible \mathscr{H}-modules.
Define $e=\min \left\{k>0: 1+q+\cdots+q^{k-1}=0\right\}$. Dipper and James showed that $D(\lambda) \neq 0$ if and only if $\lambda_{i}-\lambda_{i+1}<e$ for all $i \geq 1$.

Specht module homomorphisms

Theorem

Let λ and μ be partitions and assume that $q \neq-1$. Suppose that $\lambda_{1}+\cdots+\lambda_{s}=\mu_{1}+\cdots+\mu_{s}$. Then
$\operatorname{Hom}_{\mathscr{H}_{n}}(S(\mu), S(\lambda)) \cong$
$\operatorname{Hom}_{\mathscr{H}}^{n-m},\left(S\left(\mu^{t}\right), S\left(\lambda^{t}\right)\right) \otimes \operatorname{Hom}_{\mathscr{H}}^{m}\left(S\left(\mu^{b}\right), S\left(\lambda^{b}\right)\right)$.
where $m=\left|\lambda^{b}\right|$.
Pictorially, this can be viewed as follows:

Idea of proof

Lemma Suppose that $q \neq-1$. Then Hom $_{\mathscr{H}}(M(\mu), S(\lambda))$ is free as an R-module with basis $\left\{\varphi_{T}: T\right.$ semistandard of type $\left.\mu\right\}$.
Basically, $\varphi_{T}\left(m_{\mu} h\right)=\sum_{t \sim \mu T} m_{\mathfrak{t}} h$.

Example

Let $\lambda=(5,4,3,3,2)$ and $\mu=(4,4,4,2,2,1)$. The semistandard λ-tableaux of type μ are:

We take

...idea of proof

From the combinatorics and the last lemma we find
$\operatorname{Hom}_{\mathscr{H}_{n}}(M(\mu), S(\lambda)) \cong$ $\operatorname{Hom}_{\mathscr{H} \mathscr{C}_{n-m}}\left(M\left(\mu^{t}\right), S\left(\lambda^{t}\right)\right) \otimes \operatorname{Hom}_{\mathscr{H}}^{m}\left(M\left(\mu^{b}\right), S\left(\lambda^{b}\right)\right)$,
$\operatorname{via} \varphi_{T} \mapsto \varphi_{T^{t}} \otimes \varphi_{T^{b}}$.
On the other hand, we have a surjection

$$
M(\mu) \rightarrow S(\mu) .
$$

It is now just a matter of "lifting" and "pushing" Specht module maps through this surjection.
This takes a fair amount of work, but is not so bad...
The proof yields an explicit bijection.

Generalizations - I

Let \mathscr{S} be the q-Schur algebra.
We have exactly the same result but with Specht modules replaced with Weyl modules:

Theorem Suppose that $\lambda_{1}+\cdots+\lambda_{s}=\mu_{1}+\cdots+\mu_{s}$. For any R and q we have

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{S}}(\Delta(\mu), \Delta(\lambda)) \cong \\
& \quad \operatorname{Hom}_{\mathscr{S}}\left(\Delta\left(\mu^{t}\right), \Delta\left(\lambda^{t}\right)\right) \otimes \operatorname{Hom}_{\mathscr{S}}\left(\Delta\left(\mu^{b}\right), \Delta\left(\lambda^{b}\right)\right) .
\end{aligned}
$$

Generalizations - II

Theorem (Donkin) Suppose that R is a field and that $\lambda_{1}+\cdots+\lambda_{s}=\mu_{1}+\cdots+\mu_{s}$. Then
$\operatorname{Ext}_{\mathscr{S}}^{k}(\Delta(\mu), \Delta(\lambda)) \cong$
$\bigoplus \operatorname{Ext}_{\mathscr{\mathscr { A }}}^{i}\left(\Delta\left(\mu^{t}\right), \Delta\left(\lambda^{t}\right)\right) \otimes \operatorname{Ext}_{\mathscr{\mathscr { C }}}^{j}\left(\Delta\left(\mu^{b}\right), \Delta\left(\lambda^{b}\right)\right)$.

$$
i+j=k
$$

Theorem (Donkin)
Suppose that R is a field, $e>2$ and that $\lambda_{1}+\cdots+\lambda_{s}=\mu_{1}+\cdots+\mu_{s}$. Then
$\operatorname{Ext}_{\mathscr{H}}^{k}(S(\mu), S(\lambda)) \cong$
$\bigoplus \operatorname{Ext}_{\mathscr{H}}^{i}\left(S\left(\mu^{t}\right), S\left(\lambda^{t}\right)\right) \otimes \operatorname{Ext}_{\mathscr{H}}^{j}\left(S\left(\mu^{b}\right), S\left(\lambda^{b}\right)\right)$
$i+j=k$
for $0 \leq k<e-2$.

Generalizations - III

Theorem (CPS,Donkin) Suppose that R is a field and that $\lambda_{1}+\cdots+\lambda_{s}=\mu_{1}+\cdots+\mu_{s}$. Then
$\operatorname{Ext}_{\mathscr{\mathscr { L }}}^{k}(L(\mu), \Delta(\lambda)) \cong$
$\bigoplus \operatorname{Ext}_{\mathscr{\mathscr { C }}}^{i}\left(\Delta\left(\mu^{t}\right), L\left(\lambda^{t}\right)\right) \otimes \operatorname{Ext}_{\mathscr{\mathscr { A }}}^{j}\left(\Delta\left(\mu^{b}\right), L\left(\lambda^{b}\right)\right)$.

$$
i+j=k
$$

Theorem (Donkin, Lyle-M.)
Suppose that R is a field, $e>2$, and that $\lambda_{1}+\cdots+\lambda_{s}=\mu_{1}+\cdots+\mu_{s}$. Then $\operatorname{Ext}_{\mathscr{H}}^{k}(S(\mu), D(\lambda)) \cong$
$\bigoplus \operatorname{Ext}_{\mathscr{H}}^{i}\left(S\left(\mu^{t}\right), D\left(\lambda^{t}\right)\right) \otimes \operatorname{Ext}_{\mathscr{H}}^{j}\left(S\left(\mu^{b}\right), D\left(\lambda^{b}\right)\right)$

$$
i+j=k
$$

for $0 \leq k<e-2$.

Generalizations - IV

If V is an \mathscr{S}-module let $\operatorname{Ch} V=\sum_{\nu}\left(\operatorname{dim} V_{\nu}\right) e^{\nu}$ be its formal character.
So Ch $\Delta(\lambda)$ is given by the Weyl character formula.

$$
\operatorname{Ch} L(\lambda)=\sum_{\substack{\mu \\ k \geq 0}}(-1)^{k} \operatorname{dimExt}_{\mathscr{\mathscr { L }}}^{k}(\Delta(\mu), L(\lambda)) \operatorname{Ch} \Delta(\mu) .
$$

Following CPS define $Q_{\mu \lambda}(t) \in \mathbb{N}_{0}[t]$ by

$$
Q_{\mu \lambda}(t)=\sum_{k \geq 0} \operatorname{dim}_{\operatorname{Ext}}^{\mathscr{A}}(\Delta(\mu), L(\lambda)) t^{k}
$$

So $\operatorname{Ch} L(\lambda)=\sum_{\mu} Q_{\mu \lambda}(-1) \operatorname{Ch} \Delta(\mu)$.

...generalizations - IV

From work of Varagnolo-Vasserot (and Leclerc-Thibon), it follows that $Q_{\mu \lambda}(t)$ is a (renormalized) inverse parabolic Kazhdan-Lusztig polynomial.
Let $d_{\mu \lambda}(t)$ be the corresponding parabolic Kazhdan-Lusztig polynomials. Then:

- (Varagnolo-Vasserot) $d_{\mu \lambda}(1)=[\Delta(\mu): L(\lambda)]$.
- (Chuang-Miyachi-Tan)

Suppose $\lambda_{1}+\cdots+\lambda_{s}=\mu_{1}+\cdots+\mu_{s}$. Then

$$
d_{\mu_{\lambda}}(t)=d_{\mu^{t} \lambda^{t}}(t) d_{\mu^{b} \lambda^{b}}(t) .
$$

