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The Hecke algebra
Fix a ring R and an integer n ≥ 1.
Let q be an invertible element of R.
The Iwahori–Hecke algebra Hn = Hq(Sn) is the
unital associative R algebra with generators

T1, . . . , Tn−1

together with the relations
(Tj + q)(Tj − 1) = 0

and the braid relations
Tj+1TjTj+1 = TjTj+1Tj
TjTk = TkTj , for |j − k| > 1



...first meaning of the definition
The symmetric group Sn has presentation given by
the diagram

· · ·
t1 t2 tn−1

So, Sn = 〈 t1, . . . , tn−1 〉 with relations:

t2i = 1,
tjtj+1tj = tj+1tjtj+1

and tjtk = tktj, for |j − k| > 1.

In contrast, Hn = 〈T1, . . . , Tn−1〉 with relations
(Ti − q)(Tq + 1) = 0 together with the braid relations.

Hence, Hn
∼= RSn, if q = 1.



Motivation
Suppose that q = pk is a prime power (p prime).
Let Fq be the finite field with q elements.

Define:

G = GLn(q) = invertible n× n matrices/Fq

B =
{( ∗ ∗ ∗

0
. . . ∗

0 0 ∗

)
∈ G

}

= upper triangular matrices in G
1B = trivial representation of B

IndGB(1B) = induced representation of G



...an amazing theorem
Let HG,B = EndG

(
IndGB(1B)

)
, an R–algebra.

Assume that R = C.

We have the following:

• CSn
∼= H1

!!∼= Hq

!∼= HG,B

• There is a 1-1 correspondence χ↔ χq between
the irreducible representations of Sn and the
irreducible constituents of IndGB(1B).

• There is a polynomial dχ(x), for χ ∈ Irr Sn,
such that: dχ(1) = dimχ
and dχ(q) = dimχq for all GLn(q) !!!



A basis
• If w ∈ Sn then write w = ti1 . . . tik , with k

minimal.
• Define Tw = Ti1 . . . Tik .

Then Tw is independent of the choice
of i1, . . . , ik.

• Further, {Tw : w ∈ Sn } is a basis of H .
• The Hecke algebra Hn is semisimple iff

n∏

m=1

(1 + q + · · ·+ qm−1) 6= 0.

• So, H need not be semisimple even if R = C !



Representation theory
• Irreducible representations of Sn are indexed by

partitions λ = (λ1 ≥ λ2 ≥ · · · ≥ 0),
with |λ| = ∑i λi = n.

• As we might hope, the same is true for H .
• To describe this we need some combinatorics.



Tableaux combinatorics
Fix a partition λ = (λ1 ≥ λ2 ≥ . . . ) of n.
We can think of λ as being an array of boxes.
For example, if λ = (3, 2, 2) then

λ↔

A λ-tableau is a filling of this diagram with the
numbers 1, . . . , n. For example,

1 2 3
4 5
6 7

1 2 4
3 5
6 7

1 2 5
3 4
6 7

and 1 4 7
2 5
3 6

are all (3, 2, 2)-tableau.



...tableaux
The symmetric group Sn acts on the set of tableaux
by permuting the entries.
Let tλ be the λ-tableau with the numbers 1, . . . , n
entered in order along the rows:

tλ =
1 2 3
4 5
6 7

If t is a λ-tableau we let d(t) ∈ Sn be the unique
permutation such that t = tλ · d(t).
Example If t =

1 3 4
2 6
5 7

then d(t) = (2, 3, 4)(5, 6).



Young subgroups
To each partition λ = (λ1, . . . , λk we can also
associate a Young subgroup

Sλ = Sλ1
× · · · ×Sλk ↪→ Sn.

Thus, Sλ is the row stabilizer of tλ.
To construct representations we need the following
element:

mλ =
∑

w∈Sλ

Tw

In fact, mλH = IndH
Hλ

(1λ)



A cellular basis
A λ-tableau is standard if its entries increase along the
rows and down the columns. For example:

1 2 3
4 5
6 7

and 1 3 4
2 6
5 7

If s and t are standard λ–tableaux define

mst = Td(s)−1mλTd(t) ∈H .

Theorem (Murphy)
{mst : s, t standard λ− tableaux } is a cellular basis
of H .



Cellular algebras (Graham–Lehrer)

In essence, the cellular basis {mst} determines the
representation theory of H .
(C1) The map ∗ : mst 7→ mts is an anti–isomorphism.
(C2) Given t and h ∈H there exist rhtv ∈ R such that

msth ≡
∑

v∈Std(λ)

rhtvmsv (mod higher terms)

Importantly, rhtv is independent of s !

(C1) and (C2) combined give:

(C2)′ hmst ≡
∑

v∈Std(λ)

rhsvmvt (mod higher terms)



Specht modules
The Specht module S(λ) is the free R–module with
basis {mt : t ∈ Std(λ) } and with H -action:

mth =
∑

v∈Std(λ)

rhtvmv.

Importantly, S(λ) has a natural bilinear form 〈 , 〉.
To define 〈 , 〉 it is enough to specify 〈mt,mu〉.

mstmuv ≡ 〈mt,mu〉msv (mod higher terms)

This equation defines a bilinear form on S(λ).



Simple modules
The bilinear form 〈 , 〉 is associative in the sense that
〈xh, y〉 = 〈x, yh∗〉, for all x, y ∈ S(λ), h ∈H .

radS(λ) = {x ∈ S(λ) : 〈x, y〉 = 0 for all y ∈ S(λ) }
is an H –submodule of S(λ).

Define D(λ) = S(λ)/ radS(λ).

Theorem Suppose R is a field. Then
{D(λ) : D(λ) 6= 0 } is a complete set of pairwise
non–isomorphic irreducible H –modules.

Define e = min { k > 0 : 1 + q + · · ·+ qk−1 = 0 }.
Dipper and James showed that D(λ) 6= 0 if and only
if λi − λi+1 < e for all i ≥ 1.



Specht module homomorphisms
Theorem
Let λ and µ be partitions and assume that q 6= −1.
Suppose that λ1 + · · ·+ λs = µ1 + · · ·+ µs. Then

HomHn

(
S(µ), S(λ)

) ∼=
HomHn−m

(
S(µt), S(λt)

)
⊗HomHm

(
S(µb), S(λb)

)
.

where m = |λb|.
Pictorially, this can be viewed as follows:

λ λt

λb

λr
λl

.



Idea of proof
Lemma Suppose that q 6= −1. Then
HomH (M(µ), S(λ)) is free as an R-module with
basis {ϕT : T semistandard of type µ }.
Basically, ϕT (mµh) =

∑

t∼µT
mth.

Example
Let λ = (5, 4, 3, 3, 2) and µ = (4, 4, 4, 2, 2, 1).
The semistandard λ–tableaux of type µ are:

1 1 1 1 2
2 2 2 3
3 3 3
4 4 5
5 6

1 1 1 1 2
2 2 2 3
3 3 3
4 4 6
5 5

,
1 1 1 1 3
2 2 2 2
3 3 3
4 4 5
5 6

,
1 1 1 1 3
2 2 2 2
3 3 3
4 4 6
5 5

.

We take s = 3.



...idea of proof
From the combinatorics and the last lemma we find

HomHn

(
M(µ), S(λ)

) ∼=
HomHn−m

(
M(µt),S(λt)

)
⊗HomHm

(
M(µb),S(λb)

)
,

via ϕT 7→ ϕT t ⊗ ϕT b.
On the other hand, we have a surjection

M(µ)→ S(µ).

It is now just a matter of “lifting” and “pushing”
Specht module maps through this surjection.
This takes a fair amount of work, but is not so bad...
The proof yields an explicit bijection.



Generalizations — I
Let S be the q–Schur algebra.

We have exactly the same result but with Specht
modules replaced with Weyl modules:

Theorem Suppose that λ1 + · · ·+ λs = µ1 + · · ·+ µs.
For any R and q we have

HomS

(
∆(µ),∆(λ)

) ∼=
HomS

(
∆(µt),∆(λt)

)
⊗ HomS

(
∆(µb),∆(λb)

)
.



Generalizations — II
Theorem (Donkin) Suppose that R is a field and that
λ1 + · · ·+ λs = µ1 + · · ·+ µs. Then
ExtkS

(
∆(µ),∆(λ)

) ∼=⊕

i+j=k

ExtiS
(
∆(µt),∆(λt)

)
⊗ExtjS

(
∆(µb),∆(λb)

)
.

Theorem (Donkin)
Suppose that R is a field, e > 2 and that
λ1 + · · ·+ λs = µ1 + · · ·+ µs. Then
ExtkH

(
S(µ), S(λ)

) ∼=⊕

i+j=k

ExtiH
(
S(µt), S(λt)

)
⊗ExtjH

(
S(µb), S(λb)

)

for 0 ≤ k < e− 2.



Generalizations — III
Theorem (CPS,Donkin) Suppose that R is a field and
that λ1 + · · ·+ λs = µ1 + · · ·+ µs. Then
ExtkS

(
L(µ),∆(λ)

) ∼=⊕

i+j=k

ExtiS
(
∆(µt), L(λt)

)
⊗ExtjS

(
∆(µb), L(λb)

)
.

Theorem (Donkin, Lyle-M.)
Suppose that R is a field, e > 2, and that
λ1 + · · ·+ λs = µ1 + · · ·+ µs. Then
ExtkH

(
S(µ), D(λ)

) ∼=⊕

i+j=k

ExtiH
(
S(µt), D(λt)

)
⊗ExtjH

(
S(µb), D(λb)

)

for 0 ≤ k < e− 2.



Generalizations — IV
If V is an S –module let ChV =

∑
ν(dim Vν)e

ν be
its formal character.
So Ch ∆(λ) is given by the Weyl character formula.

ChL(λ) =
∑

µ
k≥0

(−1)kdimExtkS
(
∆(µ),L(λ)

)
Ch ∆(µ).

Following CPS define Qµλ(t) ∈ N0[t] by

Qµλ(t) =
∑

k≥0

dim ExtkS
(
∆(µ), L(λ)

)
tk.

So ChL(λ) =
∑

µQµλ(−1) Ch ∆(µ).



...generalizations — IV
From work of Varagnolo–Vasserot (and
Leclerc–Thibon), it follows that Qµλ(t) is a
(renormalized) inverse parabolic Kazhdan–Lusztig
polynomial.
Let dµλ(t) be the corresponding parabolic
Kazhdan–Lusztig polynomials.
Then:
• (Varagnolo–Vasserot) dµλ(1) = [∆(µ) : L(λ)].

• (Chuang–Miyachi–Tan)
Suppose λ1 + · · ·+ λs = µ1 + · · ·+ µs. Then

dµλ(t) = dµtλt(t)dµbλb(t).
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