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The Hecke algebra

Fix aring R and an integer n > 1.
Let ¢ be an invertible element of .

The Iwahori—Hecke algebra 5%, = 37,(&,,) is the
unital associative 2 algebra with generators

Ti,..., 1, 1
together with the relations

(Tj +a)(T; =1) =0

and the braid relations
Ljd il = 1515115
Tka:Tij, for ‘j—k‘ > 1



...flirst meaning of the definition

The symmetric group &,, has presentation given by
the diagram

oo —o
t1 1o tn—1

So, S, = (t1,...,t,_1) withrelations:

titjvity = tipatititn
and tt;, = tit;, for |j — k| > 1.

In contrast, .77, = (17, ...,T,,_1) with relations
(T; — 0)(T, + 1) = 0 together with the braid relations.

Hence, ¢, = RS, if



Motivation

Suppose that ¢ = p” is a prime power (p prime).
Let ¥, be the finite field with ¢ elements.

Define:

G = GL,(¢) = invertible n x n matrices/IF

((45:) =¢)

= upper triangular matrices in ¢

B

1l p = trivial representation of 5

Ind%(15) = induced representation of G



...an amazing theorem
Let = Endg (Ind%(15)), an R-algebra.
Assume that R = C.

We have the following:

e C6, = 4 =

 There 1s a 1-1 correspondence y < ., between
the 1irreducible representations of G,, and the

 There is a polynomial d, (x), for y € Irr G,
such that: d, (1) = dim x
and d, (7) = dim GL,(9)



A basis

If we &G, then write w = t¢;, ...%; , with k
minimal.

Define 1, =1, ... 7T,

ik
Then 7, 1s independent of the choice
Ofil, c. ,ik.

Further, { T}, : w € G,, } is a basis of JZ.

The Hecke algebra .77;, is semisimple iff

n

H(1+q+---+qm_1)7é().

m=1

So, R =C



Representation theory

 Irreducible representations of &,, are indexed by
partitions A = (A > Ay > -+ > 0),
with |A\| =) . \; = n.

e As we might hope, the same is true for 7.

e To describe this we need some combinatorics.



Tableaux combinatorics
Fix a partition A = (A\; > Ay > ...) of n.

We can think of A as being an

For example, if A = (3,2, 2) then

and

[

(\©)

S| OV~

A\
A A-tableau 1s a filling of this diagram with the
numbers 1, ..., n. For example,
11213 1124 11215
415 3|9 314
6|7 6|7 6|7

are all (3, 2, 2)-tableau.




...tableaux

The symmetric group &,, acts on the set of tableaux
by permuting the entries.

Let t* be the \-tableau with the numbers 1,...,n
entered in order along the rows:

1123
— 4|5
6|7

If tis a A-tableau we let c G,, be the unique

permutation such that t = t* -
1134

If t =376

5|7

then d(t) = (2,3,4)(5,6).




Young subgroups

To each partition A = (\q, ..., A\; we can also
associate a Young subgroup

G\=6, X - X B,

Thus, &, is the row stabilizer of .
To construct representations we need the following

element:
_ Z T,

WEG ),

In fact, myJ¢ = Indfé\(h)



A cellular basis

A A-tableau 1s standard 1f its entries increase along the
rows and down the columns. For example:

3

12
415
6|7

If 5 and ! are standard

— Td( )_1m Td( )

(Murphy)

{ mg : s, t standard \ — tableaux } is a cellular basis

of 7.

and

1

4

2

5

3
6
7

—tableaux define

c .




Cellular algebras

In essence, the cellular basis {ms} determines the
representation theory of 7.
The map + : my — my 1S an anti—-1somorphism.

Given t and i € J7 there exist 7], € R such that

m.¢h = Z rim., (mod higher terms)
beStd(\)

Importantly, r{ is independent of & !

and combined give:

himg = Z r’ my  (mod higher terms)
beStd(\)



Specht modules

The Specht module S(\) is the free R—module with
basis { m¢ : t € Std()\) } and with .7#-action:

mih = g rime.

veStd(A)

Importantly, S(\) has a natural bilinear form ( , ).
To define ( , ) it is enough to specify (my, m,,).

MMy = (Mg, My)M (mod higher terms)

This equation defines a bilinear form on S(\).



Simple modules

The bilinear form ( , ) is associative in the sense that
(xh,y) = (x,y ), forall x,y € S(\), h € F.

radS(A\) ={x € S(\) : (z,y) =0forall y € S(\) }
is an .7Z—submodule of S ().

Define D()\) = S(\)/rad S(N).

Suppose 7 1s a field. Then
{ D(\) : D(X) # 0 } is a complete set of pairwise
non—isomorphic irreducible .7Z—modules.

Definee =min{k >0:14+qg+---+¢" =01}

Dipper and James showed that D(\) # 0 if and only
if \; — )\z’—l—l < eforall: > 1.



Specht module homomorphisms

Let A and 1 be partitions and assume that ¢ ¢ —1.
Suppose that \; + -+ + A\; = g + -+ + ps. Then

12

Hom%ﬂ ( ( t),S(At))®HOm%m(S(Mb),S()\b)).

where m = |\°|.
Pictorially, this can be viewed as follows:

B A N AT —

I YT T

. . .




Idea of proof

Suppose that ¢ # —1. Then
Hom (M (1), S(N)) is free as an R-module with

basis { o : T semistandard of type u }.

Basically, @7 (m,h) Z mgh.

Let A = ( ,3,2) and = ( 2,2, 1).
The semistandard A—tableaux of type u are:

Ot~
Ot~
(@)
Ot~
@pYIIEN
ot
Ot~
Ot~
(@)

41415
5|6

We take



...idea of proof

From the combinatorics and the last lemma we find

Hom , (M(p), S(X)) =
Hom e, (M (u'),S(A))) @Hom ., (M (u?),S(AY)),

via o7 — ot ® 7.
On the other hand, we have a surjection

M () — S(p)-

It 1s now just a matter of “lifting” and “pushing”
Specht module maps through this surjection.

This takes a fair amount of work, but 1s not so bad...

The proot yields an explicit bijection.



Generalizations — 1
Let .# be the g—Schur algebra.

We have exactly the same result but with Specht
modules replaced with Weyl modules:

Suppose that Ay + -+ -+ As = g + - - + ps.
For any R and g we have

Hom» (A(u), A(N)) =
Hom o (A(u'), A(N')) @ Hom» (A(u’), A(X?)).



Generalizations — 11

(Donkin) Suppose that ? 1s a field and that
M+ -4 Xy = i1 + -+ p15. Then
Ext’, (A(r), A(N)) = |
P Exti (A, AN)) @Ext (A1), AN)).

i+j=k

(Donkin)
Suppose that 2 1s a field, e > 2 and that
M+ 4 Xy =g + -+ p1. Then

Ext", (S(u), S(\)) = |
P Extl(S(u'), S(\)) @Ext’, (S (1), S(A"))

it+i=k
for0 < k < e— 2.




Generalizations — 111

(CPS,Donkin) Suppose that 1 1s a field and
that \y +---+ A = 1 +--- + us. Then
Ext!, (L(n), A(N)) =

D Ext',(A(u'), LIN)) @Extl(A(1"), LIX")).

i+j=k

(Donkin, Lyle-M.)
Suppose that R 1s a field, e > 2, and that
)\1—|——|—)\S:,LL1—|— —|-,LLSTh6n

Bxtly (S(n), D(N)) = ‘
D Extl(S(u'), DIX)) ©Ext’,(S(u"), D(X))

i+ =k
for0 < k <e— 2.




Generalizations — 1V

If Visan .”—module let ChV = ) (dim V) )e” be
its formal character.
So Ch A()) is given by the Weyl character formula.

Ch L(A) =) (—1)"dimExt%, (A(u),L(A) Ch Ap).

14
k>0

Following CPS define @)\ (t) € Nyl[t| by

QuA(t) = dim Ext’,(A(n), L()) t*.

k>0

So Ch L(A) = 32, Qua(—1) Ch Ap).



..generalizations — 1V

From work of Varagnolo—Vasserot (and
Leclerc—Thibon), it follows that ) ,»(¢) is a

(renormalized) inverse parabolic Kazhdan—Lusztig
polynomial.

Let d,,)(t) be the corresponding parabolic

Kazhdan—Lusztig polynomials.
Then:

e (Varagnolo—Vasserot) d,,»(1) = [A(u) : L(N)].

¢ (Chuang—Miyachi—Tan)
Suppose A\{ + - -+ + Ay = 1 + - - - + ps. Then

du)\(t) = 1 ) (t)dlub)\b (1).
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