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Abstract. Branching problems ask how an irreducible representation of a group
decomposes when restricted to a subgroup. This exposition surveys new aspects of

branching problems for unitary representations of reductive Lie groups.

The first half is written from the representation theoretic viewpoint. After an
observation on the wild features of branching problems for non-compact subgroups

in a general setting, we introduce the notion of admissible restrictions as a good
framework that enjoys two properties: finiteness of multiplicities and discreteness

of spectrum. A criterion for admissible restrictions is presented, of which the idea

of proof stems from microlocal analysis and algebraic geometry. In this framework,
we present a finite multiplicity theorem. Furthermore, an exclusive law of discrete

spectrum is formulated for inductions and restrictions.
The second half deals with applications. Once we know the non-existence of

continuous spectrum in the restrictions, we could expect an algebraic approach to

branching problems. In this framework, new branching formulas have been recently
obtained in various settings, among which we present an example, namely, a gen-

eralization of the Kostant-Schmid formula to non-compact subgroups. Finally, we
mention some applications of discretely decomposable branching laws to other fields

of mathematics. The topics include

(1) topological properties of modular varieties in locally symmetric spaces,
(2) a construction of new discrete series representations for non-Riemannian non-

symmetric homogeneous spaces.
We end the exposition by a brief discussion on the mystery between tessellation

of non-Riemannian homogeneous spaces and branching problems of unitary repre-

sentations.
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§0. Introduction

In my opinion, one of the most fascinating features in representation theory of
Lie groups arises from the “outside”, namely, through various interactions with dif-
ferent fields of mathematics and physics, including partial differential equations, dif-
ferential geometry, algebraic geometry, functional analysis, combinatorics, number
theory, etc. Furthermore, such interactions are still growing actively and sometimes
show up unexpectedly.

However, if we look at the “inside” of representation theory itself by forgetting
interactions with other branches of mathematics, what remains as central problems?
From the viewpoint of “analysis and synthesis”, we may emphasize the following
two problems:

Problem 1.
Understand irreducible representations.
Find and classify the “smallest” objects.

Problem 2.
Decompose a given representation into irreducible ones.

How is a given representation built from the “smallest” objects?

In traditional chemistry or physics of condensed matter, Problem 1 would cor-
respond to the “classification of atoms” [or elementary particles, · · · ] (the level
depends on what we regard as “smallest”), while Problem 2 would correspond to
the “analysis and synthesis” of molecules [or of atoms, · · · ].

Let us consider Problems 1 and 2 for Lie groups and their representation theory.
First, the “smallest objects” for Lie groups should be simple Lie groups such as

SL(n,R) and SU(p, q), and one-dimensional Abelian Lie groups such as R and S1.
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Simple Lie groups (or slightly more generally, reductive Lie groups) are the groups
that we shall deal with throughout this article. Simple Lie groups were infinitesi-
mally classified by É. Cartan (1894 for complex Lie groups, 1914 for real Lie groups)
after a pioneering work of Killing from 1888 to 1890. We recall that semisimple Lie
groups are locally isomorphic to the direct product of simple Lie groups; reductive
Lie groups are locally isomorphic to the direct product of semisimple Lie groups
and Abelian Lie groups.

Next, let us consider Problems 1 and 2 for “representations”. Then, the small-
est objects should be irreducible representations (we need to use an appropriate
category of representations because there are subtle topological problems in deal-
ing with infinite dimensional representations). Problem 1 asks the classification of
irreducible (unitary) representations, which contains the following subproblems:

· Construction of irreducible representations.
· Finding a complete set of invariants of representations, so that they can

separate different irreducible representations from one another.
· Understanding these invariants.

A classical example of invariants of representations π is the character Trace(π).
If π is infinite dimensional, then the character Trace(π) is no more a continuous
function on a group G in general. Harish-Chandra justified it as a distribution for a
suitable class of representations π (e.g. π is an irreducible unitary representation of
a reductive Lie group G). The asymptotic K-support ASK(π) and the associated
variety Vg(π) are also useful invariants of representations of a reductive Lie group G,
which we shall explain and apply in branching problems in §1 and §2, respectively.

The classification of irreducible unitary representations of simple Lie groups has
been a long-standing problem. More than half a century has passed since the
pioneering work of Bargmann and the Gel’fand school in the 1940s, and there has
been a large development by Vogan and some others, particularly in the 1980s
(we refer to the textbook [26] by Knapp and Vogan for a guide to some recent
literatures). The unitary dual has been classified for some groups such as GL(n,F)
(F = R,C,H), but it has not been classified for some other groups such as O(p, q)
and Sp(n,R) (p, q, n ≥ 3).

Second, let us consider Problem 2. We begin with some examples of the de-
composition of representations. They are closely related to classical mathematical
problems such as:
1) Spectral theory of unitary operators. This is equivalent to the irreducible de-

composition of a unitary representation of Z on a Hilbert space.
2) The theory of reduction of matrices to Jordan normal forms of matrices. This

corresponds to the decomposition of finite dimensional representations of Z on
C
n.

3) The Fourier transform. We may regard this as the irreducible decomposition
of the regular representation of the Abelian Lie group R on L2(R).

4) The Fourier series expansion. We may regard this as the irreducible decompo-
sition of the regular representation of the torus group S1 on L2(S1).
All of the above examples correspond to the decompositions of representations

of Abelian groups, Z, R and S1. How about non-Abelian groups, such as SL(n,R)?
We consider two important settings where questions of decomposing representa-

tions arise naturally: Let G be a group, and G′ its subgroup.
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Problem 2-A (Decomposition of induction) Given an irreducible representa-
tion τ of a subgroup G′, decompose the induced representation IndGG′ τ into irre-
ducibles of G.
Problem 2-B (Decomposition of restriction) Given an irreducible represen-
tation π of G, decompose the restriction π|G′ into irreducibles of a subgroup G′.

For a compact G, these two problems are related to each other by the Frobenius
reciprocity. For a non-compact G, we do not know a strong analog of the Frobenius
reciprocity; however, the comparison of these problems may help us to get a feeling
of the current status on them. (So, we shall compare these problems occasionally
in this article.)

Problem 2-A corresponds to the Plancherel type theorem for the homoge-
neous space G/G′ if τ = 1 (the one-dimensional trivial representation), namely,
to find the formula of the irreducible decomposition of the regular representation
L2(G/G′). For general τ , Problem 2-A deals with L2-harmonic analysis on a G-
equivariant vector bundle over the homogeneous space G/G′.

The formula of the irreducible decomposition in Problem 2-B is called a branch-
ing law. The decomposition of the tensor product of two representations is an
example of branching laws. Branching laws for certain groups arise in quantum
mechanics as a description of breaking symmetries.

In this paper, we shall focus on Problem 2-B, namely, on branching problems.
We are interested in the branching problem of the restriction π|G′ in a general
setting where both G and G′ are reductive Lie groups and π is an irreducible
unitary representation. This setting contains many important cases indeed, but is
perhaps too general to expect strong results (at least, now). Our initial project is
to single out a nice category of branching problems, in which we could study deeply
and explicitly the restriction of unitary representations. For this purpose, we shall
observe some of major difficulties present in branching problems in a general setting
(see §1.A).

In order to clarify our viewpoint of this article, we begin with an elementary
example of branching laws of finite dimensional representations: Let C[x, y, z] be
the polynomial ring of three variables. We write Pk for its subspace consisting of
homogeneous polynomials of degree k. For instance, dimC P3 = 10. We arrange
elements of P3 in the descending order of zj as follows:

P3 = C{z3}+ C{xz2, yz2}+ C{x2z, xyz, y2z}+ C{x3, x2y, xy2, y3}
(0.1)

' C{z3}+ C{x, y} ⊗ C{z2}+ C{x2, xy, y2} ⊗ C{z}+ C{x3, x2y, xy2, y3}.

Then, G := GL(3,C) acts on the left side of (0.1) naturally and irreducibly, and so
does G′ := GL(2,C)×GL(1,C) on each summand of the right side. Thus, we can
regard (0.1) as the branching law of the restriction of an irreducible representation
of G with respect to the subgroup G′.

Let us pin down the dimensions of (0.1), by forgetting explicit representation
spaces:

10 = 1 + 2 + 3 + 4

= (1× 1) + (1× 2) + (1× 3) + (1× 4).
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The second equality indicates that each irreducible representation of G′ occurs
multiplicity free. We shall compare this formula with branching laws of infinite
dimensional representations (see (0.4), (0.5) and (0.6) below).

Next, consider the direct sum decomposition of the Hilbert space L2(S1) by the
Fourier series expansion:

(0.2) L2(S1) '
∑⊕

n∈Z

Ce
√
−1nx, f(x) 7→ {f̂(n)}n∈Z.

Let G = SL(2,R). Then one can define an action of G on the left side of (0.2)
as an irreducible unitary representation (a principal series representation) by

π(g) : L2(R)→ L2(R), f(x) 7→ |cx+ d|−1 f(
ax+ b

cx+ d
)

where g−1 =
(
a b
c d

)
, via the identification

L2(S1) ∼→ L2(R), F 7→ | cos
θ

2
|−1F (tan

θ

2
).

Then we may interpret (0.2) as a branching law when restricted from G = SL(2,R)
to G′ = SO(2) (see [50], for detailed formulas).

Similarly, let us consider the direct integral decomposition of the Hilbert space
L2(R) by the Fourier transform:

(0.3) L2(R) '
∫
R

Ce
√
−1ξxdξ f(x) 7→ f̃(ξ).

Then, we may interpret this formula as the branching law when restricted from
SL(2,R) to a unipotent subgroup G′ (consisting of strictly upper triangular ma-
trices) which is isomorphic to R. Namely, G acts on the left side L2(R) as an
irreducible unitary representation, and the subgroup G′ acts irreducibly on each
one-dimensional representation Ce

√
−1ξx on the right side.

As a “coarse” information on (0.2) and (0.3), we pin down the multiplicities and
the dimensions of irreducible components, respectively as follows:

Dimensions Spectrum

∞ = · · ·+ (1× 1) + (1× 1) + (1× 1) + · · · (purely discrete),(0.4)

∞ =
∫
R

(1× 1)dξ (purely continuous).(0.5)

Since our concern in this article is with non-Abelian and non-compact groups,
we need to deal mostly with infinite dimensional representations. Then, the feature
of the dimension formula (0.4) will be loosely stated in the following generalization:

(0.6) ∞ = · · ·+ (finite ×∞) + (finite ×∞) + (finite ×∞) + · · · .

Here, the left side of (0.6) is controlled by G, and the right side indicates that
each irreducible (infinite dimensional) representation of G′ occurs discretely with
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finite multiplicity. A branching formula with this feature will be called a G′-
admissible restriction (see Definition 1.1).

The main theme of this paper is admissible restrictions of unitary represen-
tations, namely, branching laws without continuous spectrum and with discrete
spectrum of finite multiplicity. We shall ask:

When does the restriction π|G′ become G′-admissible?

This is the case if G′ is a maximal compact subgroup (a fundamental theorem
of Harish-Chandra; see Example 1.2). This is also often the case if π is a unitary
highest weight representation (see Definition 3.5). Here, among irreducible
unitary representations of a reductive group, unitary highest weight representa-
tions are rather special and have been studied extensively and understood best.
Typical examples are holomorphic discrete series representations (see §3.B). The
Segal-Shale-Weil representation splits into two irreducible representations of the
metaplectic group Mp(n,R) (the double covering group of the symplectic group
Sp(n,R)), and each of them is also a unitary highest weight representation. These
representations are infinite dimensional, but it turns out that they are relatively
“small” compared to non-highest weight representations. They have a nature of
“one-sided infinity” something like the half line [0,∞) which has the “bottom” 0.
This is in contrast to a “both-sided infinity” (−∞,∞). By this one-sided prop-
erty, unitary highest weight modules π tend to be discretely decomposable when
restricted to a subgroup (see Example 1.3, Theorem 3.6). We note that the min-
imum element (such as 0 in [0,∞)) corresponds to a highest weight vector of π,
which may be interpreted as a vacuum vector in quantum mechanics.

On the other hand, most of the irreducible unitary representations are not “one-
sided”, namely, there are no highest weight vectors. In other words, unitary highest
weight representations are rather rare among the unitary dual Ĝ. What shall we
expect for the spectrum in the branching laws of “general” infinite dimensional
representations ? Does it happen that the restriction π|G′ is G′-admissible?

As we have seen for the irreducible decomposition of the regular representation
of R on L2(R) in (0.3), branching laws usually contain continuous spectrum, when
restricted to non-compact subgroups. It is no wonder that most people did not
pay attention on the possibility of the non-existence of continuous spectrum in the
branching law of the restriction π|G′ in a general case where π is a non-highest
weight representation and G′ is non-compact.

In 1988, inspired by the theory of discontinuous groups for pseudo-Riemannian
homogeneous spaces (see [41], [84] for an exposition), I found explicit branching
laws of some (non-holomorphic) discrete series representations with respect to non-
compact subgroups. The branching laws are not very complicated and still dis-
cretely decomposable, and I was curious about a mysterious phenomenon of discrete
decomposability even in such a general setting ([28]). My proof of the branching
laws was based on the theory of harmonic analysis on semisimple symmetric spaces
([14], [68]) and vector bundles on them ([31]), and on the algebraic theory of Zucker-
man and Vogan’s derived functor modules ([74], [75], [76]), both of which developed
largely in the 1980s (see also the references in [26], [36]).

These new branching laws became the first breakthrough in our study of dis-
cretely decomposable restrictions ([31], [35], [36], [37], [44], [49], [50]). We shall
explain its flavor in §4.D.5.
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Different from our original methods in [28], we shall adopt in this article the
approach of [37] and [46], where global analysis on homogeneous spaces has a
relatively small role. That is, we shall study discretely decomposable restrictions
as a problem inside representation theory (see §§1 – 3), and then apply the theory
of restrictions as a method to study global analysis on homogeneous spaces (see
§4.C).

This exposition is organized as follows. First, we formulate and give basic results
on discrete decomposable branching laws from an analytic aspect (§1) and from an
algebraic aspect (§2). Next, we explain some more results on discretely decompos-
able restrictions, possible directions for further developments and new perspectives
of unitary representation theory relevant to branching problems in §3. In the latter
half of this paper, we give an outline of some applications of discretely decompos-
able branching laws to other areas of mathematics. Most results here have been
developed in the last five years. The applications explained in §4 range from num-
ber theory to discontinuous groups and to global analysis on homogeneous spaces.
Each application in §4 can be read independently.

§1. Analytic theory of admissible restrictions

Throughout this paper, we shall assume that a reductive Lie group G is a linear
group or its finite covering. Without loss of generality, we shall assume that a real
reductive linear group G is realized as a closed subgroup of GL(N,R) satisfying the
following two conditions:

(i) The number of connected components of G is at most finite.
(ii) G is stable under the transpose operation of matrices (namely, tG = G).

Here are classical examples of linear reductive Lie groups G:

G =GL(n,R), SL(n,R), O(p, q), U(p, q), Sp(p, q), Sp(n,R),

SU∗(2n), SO∗(2n), GL(n,C), SL(n,C), SO(n,C), Sp(n,C).

Here, we note that GL(n,C) can be realized in GL(2n,R) such that it is stable
under the transpose operation of 2n× 2n matrices.

Suppose G is a linear reductive Lie group satisfying the above conditions (i) and
(ii). We put

K := G ∩O(N).

Then, K is a maximal compact subgroup of G. We write g, k for the Lie algebras
of G, K. A reductive Lie group G is a semisimple Lie group if the center of g is
{0}.

Let Ĝ be the set of the (unitary) equivalence classes of irreducible unitary rep-
resentations of G. Then Ĝ is called the unitary dual of G.

1.A. Branching laws of unitary representations.
Given π ∈ Ĝ and a subgroup G′ of G, we consider the problem of finding the

branching law of the restriction π|G′ , namely, the decomposition formula of π into
irreducible representations of G′.

For compact G, any irreducible unitary representation π is finite dimensional.
Then, the branching problem is theoretically solvable in the sense that any partic-
ular case can be done, because there exists an algorithm to obtain branching laws,
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based on Weyl’s character formula. Of course, such an algorithm often involves
complicated combinatorial problems.

On the other hand, for the branching law π|G′ of an infinite dimensional unitary
representation π, no general algorithm is known if G ⊃ G′ are (non-compact)
reductive Lie groups.

As a matter of fact, branching laws of unitary representations of semisimple
Lie groups have not been studied systematically except for some special cases (al-
though some of the special cases are already rich and very interesting). Here is an
observation about difficulties to find branching laws of infinite dimensional unitary
representations.
1) If π ∈ Ĝ is constructed as a usual induced representation (e.g. a principal series

representation), then by using the classical theory of Mackey ([58]) the branching
law is reduced to another (usually difficult) problem of harmonic analysis, that
is, to find the Plancherel-type theorem for a homogeneous space (see Problem
2-A). Only recently, the latter problem has been solved under the assumption
that the homogeneous space is a semisimple symmetric space1 (see [12], [68]).
But, the homogeneous spaces arising from the branching problems are usually
much more general than semisimple symmetric spaces and the Plancherel-type
theorem for such spaces is far from being understood. (Even a subproblem such
as Problem 4.C.1 is very difficult.)

2) Some of irreducible unitary representations of semisimple Lie groups cannot be
realized as usual induced representations. Discrete series representations are an
example. In this case, there is no known general method to find branching laws
of the restriction π|G′ for non-compact G′. (We note that the Mackey theory
does not work in this case.)

3) Branching laws when restricted to non-compact subgroups often contain both
discrete and continuous spectrum. Usually, purely algebraic methods do not
work if continuous spectrum occurs.

4) Even worse, multiplicities of irreducible unitary representations of G′ occurring
in branching laws can be infinite even if G′ is a maximal reductive subgroup of
G (e.g. (G,G′) is a semisimple symmetric pair), a problem to which we paid
much attention in [28]. Infinite multiplicities in branching laws can happen even
in the decomposition of tensor product representations, that is, the restriction
with respect to a diagonally embedded group G1 in the direct product group
G1 ×G1.

5) Fix a group G and its subgroup G′. By the Frobenius reciprocity, the following
two problems are equivalent if G is compact:
i) To find branching laws of the restriction π|G′ for all π ∈ Ĝ.
ii) To find irreducible decompositions of the induced representation IndGG′(τ)

for all τ ∈ Ĝ′.
Loosely, we might suppose that the above two problems (i) and (ii) have com-

parable difficulties also for non-compact G′. If so, let us compare our current
knowledge on the problems (i) and (ii). As for (ii), very little has been studied
in the case dim τ = ∞ (see [28], §1.3), although there are some successful cases,
namely, where dim τ = 1 and (G,G′) is a symmetric pair, as we have already men-
tioned. In summary, (ii) is still far from being solved because we need to deal with

1Irreducible semisimple symmetric spaces were classified by M. Berger on the level of Lie

algebras [6].
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all τ ∈ Ĝ′ which are mostly infinite dimensional representations. Likewise, (i) is far
from being solved in general. Thus, we believe it is reasonable to attack branching
problems (i) by limiting ourselves to more special and nicer cases.

1.B. Discretely decomposable restrictions as a “nice framework”.
As we have discussed so far, general branching problems involve too many, and

too much different a type of difficulties when dealing with infinite dimensional
representations of reductive Lie groups.

So, our strategy is first to find a good framework among general branching prob-
lems, and then to initiate a deeper and detailed study in this framework. Such a
framework should cover at least some important cases of branching problems where
Mackey’s classical theory does not apply (e.g., π is a discrete series representation
of G). Furthermore, the following nature is desirable:

a) The framework is rich in new interesting examples, which are also useful in some
applications.

b) In such a framework, we could find branching laws explicitly, or at least there
exists an algebraic algorithm to find branching laws.

From this viewpoint, the author proposed the following Definition 1.1 in [35] and
[37] with emphasis on the case of non-compact subgroups: Let G ⊃ G′ be reductive
Lie groups, and π ∈ Ĝ. We define the multiplicity of τ ∈ Ĝ′ in the discrete spectrum
of the restriction π|G′ by the dimension of continuous G′-intertwining operators:

mπ(τ) := dim HomG′(τ, π|G′).

Definition 1.1 (analytic definition of discretely decomposable restriction). We
say that the restriction π|G′ is G′-admissible if the restriction π|G′ splits into a
discrete direct sum of irreducible unitary representations of G′ and if mπ(τ) < ∞
for any τ ∈ Ĝ′.

If π|G′ is G′-admissible, then we have a unitary equivalence of G′-modules:

(1.1.1) π|G′ '
∑⊕

τ∈Ĝ′

mπ(τ)τ (a discrete direct sum of Hilbert spaces).

Here,
∑⊕ denotes the Hilbert completion of an algebraic direct sum. In particular,

the formula (1.1.1) means that there is no continuous spectrum in the branching
law of π|G′ .

The significance of Definition 1.1 is that there are “new” examples. However, we
shall start with “old” examples of admissible restrictions.

The following theorem of Harish-Chandra is fundamental in representation the-
ory of reductive Lie groups, and has enabled us to study unitary representations
by purely algebraic methods (the so-called theory of (gC,K)-modules or Harish-
Chandra modules). This theorem may be regarded as a special example of Defini-
tion 1.1 (the case G′ = K):
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Example 1.2 (Harish-Chandra [17], see also [78], Theorem 3.4.1). For any π ∈ Ĝ,
the restriction π|K is K-admissible2.

In the Introduction, we have seen an example of branching laws which is given
by the Fourier series expansion (see (0.2)). This is a special case of Example 1.2
applied to (G,K) = (SL(2,R), SO(2)) (multiplicity is free in this case).

The theta-correspondence plays an important role in number theory of au-
tomorphic forms. The following result of Howe [20] presents another example of
G′-admissible restrictions, where G′ is non-compact:

Example 1.3 (discrete decomposability in the theta-correspondence). Let G be
the metaplectic group Mp(n,R). Suppose that (G,G′) is a reductive dual pair,
namely, G′ = G′1G

′
2 is a reductive subgroup in G such that G′1 and G′2 are each

other’s centralizers in G. If G′1 or G′2 is compact and if π is the Segal-Shale-Weil
representation of G, then the restriction π|G′ decomposes discretely with multi-
plicity free, in particular, it is G′-admissible. The branching laws produce a lot of
irreducible unitary highest weight representations (see Kashiwara and Vergne [24],
for example, for some explicit branching laws).

In Definition 1.1, we have formulated analytically the condition that there
is no continuous spectrum in the branching law. We shall also formulate the
notion of “discrete decomposability” algebraically in terms of (gC,K)-modules
(Definition 2.3). There is a slight difference between these two definitions of discrete
decomposable restrictions, especially, we allow the multiplicity to be infinite in our
definition of algebraic discrete decomposability in §2. Then, the study of this
difference gives rise to a finite multiplicity theorem ([49], see Theorem 3.2 in §3.A):

“discreteness (in the spectrum) ⇒ finiteness (of multiplicity)”

for the restriction of discrete series representations with respect to semisimple sym-
metric pairs (see also Conjecture 3.4 in §3.A in a more general setting).

So far, we have given two examples of G′-admissible restrictions, namely, Exam-
ples 1.2 and 1.3. In both cases, we made strong assumptions: in Example 1.2 G′ is
compact, while in Example 1.3 π has a non-zero highest weight vector (we called
this property “one-sided infinity” in the Introduction; such representations are very
special among Ĝ).

Our formulation (Definition 1.1) was intended to seek for new settings where the
branching law π|G′ is G′-admissible, beyond Examples 1.2 and 1.3. The criterion
below (see Theorem 1.5) assures that there are quite rich examples of G′-admissible
restrictions π|G′ even though G′ is non-compact and π is not a highest weight rep-
resentation. Thus, a number of branching problems in this framework are newly
obtained, which should to be accessible by purely algebraic methods. Examples
of explicit (discretely decomposable) branching laws of discrete series representa-
tions (or more generally, Zuckerman-Vogan derived functor modules Aq(λ)) have
been found with respect to symmetric pairs such as (O(p, q), O(p − r, q) × O(r)),
(O(2p, 2q), U(p, q)) and so on, in this new “nice” framework (see [35] Part I, [37]).

2This property is usually called “admissible”. The terminology in Definition 1.1 is named after

it.
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1.C. A sufficient condition for discretely decomposable restrictions.
Let G be a real reductive linear group. For simplicity, we assume that G is

connected. Then, a maximal compact subgroupK ofG is also connected. SinceK is
compact, any irreducible unitary representation ofK is finite dimensional. As usual,
we write K̂ for the set of equivalence classes of irreducible unitary representations
of K. Let k be the Lie algebra of K, and take a maximal Abelian subspace t of k.
We fix a positive system ∆+(k, t). Then K̂ is identified with the set of dominant
integral weights by the Cartan-Weyl highest weight theory. Hereafter, K̂ will be
regarded as a subset of

√
−1t∗.

Definition 1.4 (asymptotic K-support [25]). For π ∈ Ĝ, we define two subsets of√
−1t∗ as follows:

SuppK(π) := {τ ∈ K̂ : HomK(τ, π|K) 6= {0}},
ASK(π) := SuppK(π)∞.

Here, for a subset S of the Euclidean space, the limit cone S∞ (see [23]) is a
closed cone defined by:

S∞ := { lim
n→∞

εnyn : yn ∈ S, εn → 0}.

The closed cone ASK(π) is called the asymptotic K-support of the representation
π.

Let G ⊃ G′ be a pair of reductive Lie groups in the sense that both G and G′

satisfy the conditions (i) and (ii) stated at the beginning of §1. Then, the adjoint
representation Ad : G → GL(g) is completely reducible when restricted to G′. If
we set K ′ := K ∩G′, then K ′ is a maximal compact subgroup of G′.

Example.
1) For (G,G′) = (GL(n,C), GL(n,R)), we have (K,K ′) = (U(n), O(n)).
2) For (G,G′) = (GL(n,C), U(p, q)), we have (K,K ′) = (U(n), U(p) × U(q)).

Here, p+ q = n.

We write g′, k′ for the Lie algebras of G′, K ′. We fix a K-invariant inner
product on k. With respect to this inner product, we define (k′)⊥ as the orthogonal
complement of k′ in k. We also identify t∗ with t, and then regard t∗ as a subspace
of k. In particular, we can regard ASK(π) as a subset of

√
−1k.

Here is a sufficient condition for the restriction π|G′ to be G′-admissible:

Theorem 1.5 (a sufficient condition for G′-admissible restriction; [44]). Let G ⊃
G′ be a pair of reductive Lie groups, and π ∈ Ĝ. If

(1.5.1) ASK(π) ∩
√
−1 Ad(K)(k′)⊥ = {0},

then the restriction π|K′ is K ′-admissible. In particular, the restriction π|G′ is G′-
admissible, namely, π|G′ decomposes discretely with finite multiplicities (Definition
1.1).

Assumption (1.5.1) is obviously satisfied if ASK(π) = {0} or if Ad(K)(k′)⊥ =
{0}. First of all, let us explain these two special cases in Examples 1.6 and 1.7.
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Example 1.6. If G′ = K, then k′ = k and therefore (k′)⊥ = {0}. Hence, we have

Ad(K)(k′)⊥ = {0}.

(In fact, it is easy to see that Ad(K)(k′)⊥ = {0} if and only if G′ ⊃ K.) Then,
assumption (1.5.1) is automatically fulfilled for any π ∈ Ĝ. The conclusion of
Theorem 1.5 in this special case is the admissibility theorem due to Harish-Chandra
as stated in Example 1.2.

Example 1.7. For π ∈ Ĝ, we have

ASK(π) = {0} if and only if dimπ <∞.

Thus, if dimπ <∞ then assumption (1.5.1) is obviously satisfied for any subgroup
G′. The conclusion of Theorem 1.5 in this special case follows also from an easy
complete reducibility result of finite dimensional unitary representations.

Here is a non-trivial example of Theorem 1.5:

Example 1.8. Let (G,G′) = (U(2, 2), Sp(1, 1)). We note that the pair (G,G′) is
locally isomorphic to (S1 × SO(4, 2), SO(4, 1)). There are 18 series of irreducible
unitary representations of G with regular and integral infinitesimal character by
a result of Salamanca Riba. Among those 18 series, 6 can be realized in closed
subspaces of L2(G), namely, they are Harish-Chandra’s discrete series representa-
tions. Among the 18 series, there are 12 series (2 of them being discrete series) of
irreducible unitary representations of G that satisfy the condition (1.5.1) (see [37]
for details). In particular, there is no continuous spectrum in the branching laws
of the restriction π|G′ if π belongs to these 12 series. Conversely, the remaining
18− 12 = 6 series of irreducible unitary representations of G are not algebraically
discretely decomposable (Definition 2.3) when restricted to G′ (see [49]).

For some important representations π such as discrete series representations, we
can compute ASK(π) in terms of the root data [44]. See [42] for actual computations
to apply Theorem 1.5.

The converse direction of Theorem 1.5 will be discussed in §2.B.
The idea of the proof of Theorem 1.5 is to capture the existence of continuous

spectrum as a “size3 of infinite dimensional representations”, by looking at the
asymptotic behavior of K-types. In [44], this was carried out by extending the work
of Kashiwara-Vergne and Howe in the 70s on the microlocal study of characters of
representations. Here, the asymptotic K-support ASK(π) plays a role of “size” of π
by means of the wave front set of the character Trace(π). Before finding a general
method in [44], we took a different and more algebraic approach in proving the
G′-admissibility of the restriction π|G′ in a special case where π is a Zuckerman-
Vogan derived functor module. See [31], Proposition 4.1.3 in the case where K ′ is
of the form of the direct product K ′1 ×K ′2; see also [37], Theorem 1.5 in the case
where (G,G′) is a semisimple symmetric pair. Gross and Wallach [16] also studied

3The representation space is an infinite dimensional, separable Hilbert space, which is unique

as a topological vector space. However, the size of representations may be “different” if we take
group actions into account. Associated varieties (in §2) and their dimensions (Gel’fand-Kirillov

dimensions) are also useful to measure ‘size’ of representations.
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G′-admissible restrictions in the case where K ′ is of the form K ′1 ×K ′2, especially
when K ′1 ' SU(2).

In §2 below, we shall reformulate Definition 1.1 in terms of (gC,K)-modules, and
obtain a necessary condition for the discrete decomposability. Namely, we introduce
the notion of infinitesimally discrete decomposability of the restriction (see
Definition 2.3), and estimate the size of infinite dimensional representations by
their associate varieties [77], which originally arose from the D-module theory. If
the restriction π|G′ is discretely decomposable, then we may consider analogous
notion of (gC,K)-modules à la Harish-Chandra and Lepowski in a more general
setting, namely, an algebraic direct sum of infinite dimensional representations
(symbolically, a notion of (gC, G′)-modules).

We note that Theorem 1.5 gives a sufficient condition not only for the G′-
admissibility of the restriction π|G′ but also for the infinitesimally discrete de-
composability of the restriction π|G′ , which is the object of §2.

§2. Algebraic theory of discretely decomposable restrictions

2.A. Algebraic reformulation of discrete decomposability.
Let us start with an example where there is only continuous spectrum in the

irreducible decomposition. As an opposite extremal case, this example (Example
2.1) serves us as a hint to find an algebraic definition of discretely decomposable
restrictions.

Example 2.1 (Wiener subspace). Let V be a subspace of L2(R). We say V is
R-invariant if V satisfies:

f(x− a) ∈ V for any f(x) ∈ V and any a ∈ R.

For a measurable set E of R, we write L2(E) for the closed subspace of L2(R), con-
sisting of all L2-functions supported on E. Then, the image of the Fourier transform
of L2(E), denoted by F(L2(E)), is a closed R-invariant subspace. Conversely, it
is known that any closed R-invariant subspace is of the form F(L2(E)) for some
measurable set E. Then, given any non-zero closed R-invariant subspace V , there
exists an infinite decreasing sequence of closed R-invariant subspaces {Vj}:

V % V1 % V2 % · · ·

(to see this, it is enough to take a sequence of measurable sets Ej of E such that E %
E1 % E2 % · · · , and then to define Vj := F(L2(Ej))). This property is equivalent
to the fact that there is no discrete spectrum in the irreducible decomposition of
the regular representation L2(R) of R. (Of course, the latter property follows also
from the irreducible decomposition of L2(R) by means of the Fourier transform (see
(0.3)).)

In summary, Example 2.1 relates the non-existence of discrete spectrum with
the existence of an infinite decreasing sequence of invariant subspaces. Next, we
shall relate the non-existence of continuous spectrum with the existence of an infi-
nite increasing sequence of invariant subspaces. Here is an algebraic formulation:

Definition 2.2 ([49], Definition 1.1). Let g be a Lie algebra, and X a g-module.
We say the g-module X is discretely decomposable if there is an increasing sequence
of g-submodules:

X0 ⊂ X1 ⊂ X2 ⊂ · · ·
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such that the following two properties are satisfied:
(2.2.1) X =

⋃∞
m=0Xm.

(2.2.2) Each Xm is of finite length as a g-module.
We note that irreducible representations of a finite dimensional Lie algebra are

usually infinite dimensional. In the above definition, we have infinite dimensional
modules Xm in mind.

Let (π,H) be an irreducible unitary representation of G, and X a subspace
of the Hilbert space H consisting of K-finite vectors. Then, X is dense in H,
and has the g-module structure (the differential representation), in addition to the
K-module structure. The above gC ∪ K-module (πK , X) is called the underlying
(gC,K)-module of π.

Next, let G ⊃ G′ be a pair of reductive Lie groups so that K ′ := K ∩ G′ is a
maximal compact subgroup of G′. We apply Definition 2.2 to the restriction to G′.

Definition 2.3 (algebraic definition of discretely decomposable restriction). Let
π ∈ Ĝ. We say that the restriction π|G′ is g′-discretely decomposable or infinites-
imally discretely decomposable if the underlying (gC,K)-module πK is discretely
decomposable as a g′-module in the sense of Definition 2.2.

It might look strange at a first glance that Definition 2.2 gives the notion of
“discrete decomposition”. In fact, the terminology is named after the following:

Theorem 2.4 (characterization of infinitesimally discretely decomposable restric-
tion; [49]). Let (G,G′) be a pair of reductive Lie groups, π an irreducible unitary
representation of G, and (πK , X) its underlying (gC,K)-module. Then the follow-
ing three conditions on the triple (G,G′, π) are equivalent:
(i) The restriction π|G′ is infinitesimally discretely decomposable (Definition 2.3).
(ii) The (gC,K)-module (πK , X) is isomorphic to an algebraic direct sum of irre-
ducible (g′

C
,K ′)-modules (discrete branching law):

(2.4.1) X '
⊕
Y

nπ(Y ) Y (an algebraic direct sum).

Here, the sum is taken over all irreducible (g′
C
,K ′)-modules Y , and

nπ(Y ) := dim Hom(g′
C
,K′)(Y,X)

is the multiplicity of Y occurring in X.
(iii) There exists an irreducible (g′

C
,K ′)-module Y such that

Hom(g′
C
,K′)(Y,X) 6= {0}.

We note that the multiplicity nπ(Y ) may or may not be infinite in Theorem 2.4.
The point of the condition (iii) is that only a single representation Y is used (for
this, we have assumed that π is irreducible).

Moreover, the following theorem holds:

Theorem 2.5 (infinitesimal ⇒ Hilbert discrete decomposition). If the restriction
π|G′ of π ∈ Ĝ is infinitesimally discretely decomposable, then we have the following
equality for any τ ∈ Ĝ′:

(2.5.1) dim Hom(g′
C
,K′)(τK′ , πK) = dim HomG′(τ, π|G′).
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We fix mπ(τ) by (2.5.1). Then, the restriction π|G′ of the unitary representation
π is decomposed into irreducibles of G′ without continuous spectrum:

π|G′ '
∑⊕

τ∈Ĝ′

mπ(τ)τ (a discrete direct sum of Hilbert spaces).

We note that the right-hand side of (2.5.1) is the dimension of continuous G′-
intertwining operators, while no topology is specified in the left-hand side of (2.5.1).
In general, we have

the left-hand side of (2.5.1) ≤ the right-hand side of (2.5.1)

without the assumption of infinitesimally discrete decomposability.
We should keep in mind that we have not imposed the condition nπ(Y ) < ∞

in the definition of infinitesimally discrete decomposability (Definition 2.3), while
we imposed the finiteness of the multiplicities in the definition of G′-admissible
restriction (Definition 1.1). As we have pointed out in [49], [50] (see also §1.B), the
multiplicities tend to be finite if the restriction has no continuous spectrum (see
Theorem 3.2 and Conjecture 3.4 in §3.A for a precise formulation).

The next (easy) example follows immediately from the equivalent definitions of
infinitesimally discrete decomposability (Theorem 2.4). We note that G′ = {e} is
allowed in the example below.

Example 2.6. If G′ is a compact subgroup, then the restriction π|G′ is infinitesi-
mally discretely decomposable for any π ∈ Ĝ.

2.B. A necessary condition for discretely decomposable restrictions
— an approach by associated varieties.

Loosely, the associated variety of a g-module π is an algebraic variety that
approximates the representation π by means of the graded ring grU(gC). Since
grU(gC) is isomorphic to a polynomial ring, one can use a standard technique of
algebraic geometry. It turns out that associated varieties are useful for the study
of infinitesimally discretely decomposable restrictions ([35] Part II, [49]).

Let us recall briefly the definition of associated varieties of g-modules (see Vogan
[77] for more details). Let X be a finitely generated module (over C) of a Lie
algebra g. The associated variety of X, denoted by Vg(X), is defined similarly
to the characteristic varieties of D-modules as follows (see [9]). Let gC be the
complexification of g. Then, X becomes a U(gC)-module by the universality of the
enveloping algebra U(gC). Take a natural filtration

C = U0(gC) ⊂ U1(gC) ⊂ U2(gC) ⊂ · · ·

of U(gC) (corresponding to degrees of partial differential operators). Let X0 be
a finite dimensional subspace of X that generates X as a U(gC)-module and put
Xn := Un(gC) · X0. Then X0 ⊂ X1 ⊂ X2 ⊂ · · · gives a filtration of X such that
Ui(gC)Xj ⊂ Xi+j . We note that X =

⋃
nXn. We put

grU(gC) :=
⊕
n

Un(gC)/Un−1(gC), grX :=
⊕
n

Xn/Xn−1.
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Then, the graded module grX carries naturally a grU(gC)-module structure. The
grU(gC)-module, grX, is regarded as an approximation of the U(gC)-module X.
The enveloping algebra U(gC) is a non-commutative algebra provided g is non-
commutative, while the graded ring grU(gC) is isomorphic to the symmetric alge-
bra S(gC) by the Poincaré-Birkhoff-Witt theorem, and then is isomorphic to the
polynomial algebra over g∗

C
. In particular, grU(gC) is commutative. The charac-

teristic variety of an S(gC)-module grX is called the associated variety of X, and
will be written as Vg(X). That is,

Vg(X) := {λ ∈ g∗
C

: f(λ) = 0 for any f ∈ AnngrU(gC)(grX)}

where AnngrU(gC)(grX) is the annihilator ideal of grX.
So far, X is just a finitely generated module of the Lie algebra of g. From now, let

(πK , X) be the underlying (gC,K)-module of an irreducible unitary representation
π of a reductive Lie group G. Then we have:

Theorem 2.7 (Vogan, [77]). The associated variety Vg(X) is a KC-invariant alge-
braic variety contained in the nilpotent cone of g∗

C
. Furthermore, Vg(X) ⊂ (gC/kC)∗

Here we recall that the nilpotent cone of g∗
C

is the algebraic variety that is iden-
tified with the closed subset

{X ∈ gC : adX is nilpotent}

under the isomorphism gC ' g∗
C
. Suppose G′ is a subgroup of G. Let

prg→g′ : g∗
C
→ (g′

C
)∗

be the projection dual to the inclusion of Lie algebras g′
C
↪→ gC. Here is a lower

estimate of the associated varieties of irreducible summands in the branching law:

Theorem 2.8 (associated varieties of irreducible summands, [49]). Suppose that
there is an irreducible (g′

C
,K ′)-module Y such that Hom(g′

C
,K′)(Y,X) 6= {0}. Then,

(2.8.1) prg→g′(Vg(X)) ⊂ Vg′(Y ).

To see the meaning of Theorem 2.8, let us consider the simplest case, that is,
the case where Y is finite dimensional. Then, it follows from the definition of an
associated variety that

Vg′(Y ) = {0}.

Consequently, (2.8.1) is equivalent to

Vg(X) ⊂ (gC/g′C)∗.

Now, we consider two cases in the following example: G′ is compact or non-
compact.
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Example 2.9. 1) If G′ is compact, then obviously there exists a finite dimensional
irreducible (g′

C
,K ′)-module Y satisfying Hom(g′

C
,K′)(Y,X) 6= {0}. In particular, if

G′ = K, then we have
Vg(X) ⊂ (gC/kC)∗ ' pC

by Theorem 2.8. This result was proved previously by Vogan (see Theorem 2.7).
2) Suppose G is a simple Lie group. If G′ is non-compact, then

prg→g′(Ad(KC)v) 6= {0}

for any non-zero nilpotent element v ∈ pC. If dimX =∞, then Vg(X) 6= {0}, and
in particular, Vg(X) contains Ad(KC)v for some non-zero nilpotent element v in
pC. Hence, prg→g′(Vg(X)) 6= {0}. Therefore, it follows from Theorem 2.8 that

Hom(g′
C
,K′)(Y,X) = {0}

for any finite dimensional irreducible (g′
C
,K ′)-module Y . See also [49], Corollary 3.9

for a relation to Moore’s ergodicity theorem [62].

The following criterion ([49], Corollary 3.4) is useful and is readily deduced from
Theorem 2.8.

Theorem 2.10 (a necessary condition for discretely decomposable restrictions).
Let (πK , X) be the underlying (gC,K)-module of π ∈ Ĝ. If the restriction π|G′
is infinitesimally discretely decomposable, then prg→g′(Vg(X)) is contained in the
nilpotent cone of (g′

C
)∗.

2.C. Three more theorems on discretely decomposable restrictions.
In this subsection, we state three direct consequences of Theorem 2.10.
We recall an obvious fact that the restriction to a compact subgroup is always

discretely decomposable (Example 2.6). For example:

Example 2.11 (the restriction which is always discretely decomposable). Let
(G,G′) = (SL(n,C), SU(n)). Then, the restriction π|G′ is infinitesimally discretely
decomposable for any irreducible unitary representation π of G.

Theorem 2.10 leads us to an opposite extremal case:

Theorem 2.12 (the restriction which is never discretely decomposable). Let
(G,G′) = (SL(n,C), SL(n,R)). Then, the restriction π|G′ is not infinitesimally
discretely decomposable for any irreducible unitary representation π of G except for
π = 1.

So, with regard to infinitesimally discrete decomposability, two real forms SU(n)
and SL(n,R) of SL(n,C) have completely different feature. Other real forms such
as SU(p, n − p) (1 ≤ p ≤ n − 1) are intermediate. A real form G′ of a complex
reductive Lie group G is called normal or split if rankG = R-rankG′. For example,
SL(n,R) is a normal real form of SL(n,C), while SU(p, n− p) is not a normal real
form except for the case (p, n) = (1, 2).

Combining Theorem 2.10 with the following lemma:

prg→g′(Ad(KC)v) contains a non-zero semisimple element for

any non-zero nilpotent element v ∈ pC if G′ is a normal real form

of a complex reductive Lie group G,

we can generalize Theorem 2.12 as follows (see [49], Theorem 8.1):
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Theorem 2.13 (the restriction is never discretely decomposable). Let G be a com-
plex reductive Lie group, and G′ its normal real form. Then, the restriction π|G′ is
not infinitesimally discretely decomposable for any infinite dimensional irreducible
unitary representation π of G.

A second application of Theorem 2.10 deals with the relation between the dis-
creteness in the induced representation (discrete series representation) and the dis-
creteness in the restriction (discrete decomposable restriction). It turns out that
they cannot stand together for symmetric pairs. Here is a statement:

Theorem 2.14 (the exclusive law of discrete spectrum for the restriction and
the induction). Let (G,G′) be an irreducible symmetric pair such that G is non-
compact. Let π ∈ Ĝ. Then both (i) and (ii) cannot occur simultaneously.
(i) The restriction π|G′ is infinitesimally discretely decomposable .
(ii) π is a discrete series representation for the homogeneous space G/G′ (i.e.
HomG(π, L2(G/G′)) 6= {0}).

We refer to [49] for the proof. At a first glance, this result might look strange, but
it is another thing that one might expect as a Frobenius reciprocity-type theorem
for infinite dimensional representations.

Here is a very special example of Theorem 2.14.

Example 2.15. Let (G,G′) be a Riemannian symmetric pair, namely, G′ is a max-
imal compact subgroup K. Then, we recall the following two well-known results:
1) The restriction π|K is infinitesimally discretely decomposable for any π ∈ Ĝ.
2) (Harish-Chandra, Helgason) There is no discrete series representation for the
Riemannian symmetric space G/K (see §4.C for the definition of discrete series
representations for a homogeneous space).

(1) is obvious (see Example 2.6), but (2) is non-trivial. (2) is equivalent to the
fact that discrete series representations for the group manifold G do not have (non-
zero) K-fixed vectors. The point here is that Theorem 2.14 asserts a non-trivial
implication (1) ⇒ (2).

As a simplest case of Example 2.15, let us consider the setting

(G,K) = (SL(2,R), SO(2)).

Then, (1) corresponds to the discreteness of the Fourier series expansion (e.g. (0.2)
in §0), and (2) means the fact that the Laplace-Bertram operator on the Poincaré
upper half plane has no L2-spectrum. Thus, even for SL(2,R), Theorem 2.14 gives
a new relationship between these two results.

Our proof of Theorem 2.14 uses the estimate of the associated varieties for in-
finitesimally discretely decomposable restrictions (Theorem 2.8). A more direct
approach to Theorem 2.14 would be preferable, which might give a better under-
standing of this mysterious relation.

Another aspect of Theorem 2.14 is that it clarifies a representation-theoretic
background for the following antithesis between vanishing and non-vanishing theo-
rems of modular symbols in arithmetic quotients of Riemannian symmetric spaces
induced from the morphism Γ′\G′/K ′ → Γ\G/K (see §4.B for details):
1) A non-vanishing theorem [73] due to Tong and Wang (some twisted case)
by using a discrete series representation π for a semisimple symmetric space G/G′.
(Discrete spectrum in the induction.)
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2) A vanishing theorem [52] due to Kobayashi and Oda by using the discrete
decomposability of the restriction π|G′ (cf. Theorem 1.5). (Discrete decompos-
ability of the restriction.)

A third application of Theorem 2.10 is about the comparison of irreducible con-
stituents of the restriction π|G′ . As we shall mention in Remark 2.17, an analogous
result fails if there exists continuous spectrum in the branching law.

Theorem 2.16 (irreducible summands have the same associated varieties). Let X
be an irreducible (gC,K)-module. For any irreducible (g′

C
,K ′)-modules Y1 and Y2

such that
Hom(g′

C
,K′)(Yj , X) 6= {0} (j = 1, 2),

their associated varieties are the same:

(2.16.1) Vg′(Y1) = Vg′(Y2).

Remark 2.17. If the branching law contains continuous spectrum, then representa-
tions of different Gel’fand-Kirillov dimensions may occur in the restriction π|G′ as
discrete spectrum. For example, the Plancherel theorem for the semisimple sym-
metric space Sp(n,R)/GL(n,R) is equivalent to the decomposition of the tensor
product of two degenerate principal series representations of Sp(n,R) with suitable
parameters by the Mackey theory (for example, see [36], Proposition 6.1). In par-
ticular, this is a special case of branching laws. On the other hand, by using the
Flensted-Jensen construction ([14]), one can prove that there exist discrete series
representations for the semisimple symmetric space Sp(n,R)/GL(n,R) with dif-
ferent associated varieties. Hence, (2.16.1) fails. In other words, we have given a
counterexample of the following wrong statement:

False “Theorem” 2.16′. Let π ∈ Ĝ. If τ1, τ2 ∈ Ĝ′ satisfy

HomG′(τj , π|G′) 6= {0} (j = 1, 2),

then
Vg′(Y1) = Vg′(Y2),

where Yj (j = 1, 2) are the underlying (g′
C
,K ′)-modules of τj.

§3. New aspect of representation theory

related to branching problems

It turns out that there exist fairly rich examples of discretely decomposable
restrictions owing to the criterion in Theorem 1.5. Consequently, many branching
problems arise, to which not much attention has been paid before, and on which
we can now expect a deeper and explicit study by algebraic methods.

In this section, we shall explain briefly some of recent topics related to discrete
branching laws.

3.A. Finite multiplicity conjecture.
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Conjecture 3.1 (Wallach, see [79]). Let (G,G′) be a semisimple symmetric pair.
If π is a discrete series representation for G, then

(3.1.1) dim HomG′(τ, π|G′) <∞ for any τ ∈ Ĝ′.

For example, the admissibility theorem of Harish-Chandra (Example 1.2) asserts
that Conjecture 3.1 holds if G′ is compact. On the other hand, if G′ is compact,
then the restriction π|G′ is obviously infinitesimally discretely decomposable. It is
proved in [49] that (3.1.1) still holds by assuming only the condition that π|G′ is
infinitesimally discretely decomposable :

Theorem 3.2 (discreteness ⇒ finite multiplicity). Let (G,G′) be a semisimple
symmetric pair. For any Zuckerman-Vogan derived functor (gC,K)-module4 X
(more precisely, cohomologically induced from a finite dimensional representation
in the good range of parameters), and for any irreducible
(g′
C
,K ′)-module Y , we have

dim Hom(g′
C
,K′)(Y,X) <∞.

Since the underlying (gC,K)-module of any discrete series representation π is
expressed as a Zuckerman-Vogan derived functor module, we have the following
corollary:

Corollary 3.3 (a proof of Conjecture 3.1 in the discrete decomposable case).
If the restriction π|G′ is infinitesimally discretely decomposable, Conjecture 3.1

is true.

Remark (infinite multiplicity). Even if (G,G′) is a semisimple symmetric pair, the
multiplicity of discrete spectrum in the restriction π|G′ can be infinite, namely,

dim HomG′(τ, π|G′) =∞ for some τ ∈ Ĝ′ and π ∈ Ĝ.

This can happen if the branching law of the restriction π|G′ contains continuous
spectrum. Different from the result due to Corwin-Greenleaf in the case of nilpotent
Lie groups, the situation of semisimple Lie groups is more delicate. For instance,
we proved in [50] that there is an example of (G,G′, π) such that

{
dim HomG′(τ1, π|G′) =∞ for some τ1 ∈ Ĝ′,

0 <dim HomG′(τ2, π|G′) <∞ for some τ2 ∈ Ĝ′,

where π is an irreducible unitary representation of SO(5,C) and G′ = SO(3, 2).
Building on Theorem 3.2, we proposed the following conjecture:

4These representations are algebraic analog of a generalized Borel-Weil-Bott theorem on (possi-

bly non-compact) complex homogeneous manifolds (see §3.D). They are often denoted by Aq(λ).
See [26], [75] for an algebraic explanation, and [36] for a survey of geometric approach due to

Schmid and Wong.
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Conjecture 3.4 (see [50], Conjecture C). Let (G,G′) be a semisimple symmetric
pair, and π ∈ Ĝ. If the restriction π|G′ is infinitesimally discretely decomposable,
then

dim HomG′(τ, π|G′) <∞ for any τ ∈ Ĝ′.

As we saw in (2.5.1), this conjecture also implies

dim Hom(g′
C
,K′)(Y, πK) <∞ for any irreducible (g′

C
,K ′)-module Y .

To end this subsection, we would like to mention an analytic aspect of Corollary 3.3:
If one realizes the representation π in a geometric way, then Corollary 3.3 may give
rise to an example of the following phenomenon: “In a system of non-holonomic
partial differential equations, local solutions are possibly infinite dimensional, but
global solutions are possibly finite dimensional.”5

3.B. A generalization of the Kostant-Schmid formula to semisimple sym-
metric pairs.

In the framework of discretely decomposable restrictions, an algebraic approach
could work effectively in branching problems. Furthermore, if the multiplicity is
free, then one could expect a simple and detailed study of branching laws. In this
subsection, we shall explain such examples. More precisely, in the setting below
(where (G,G′) is a semisimple symmetric pair), it turns out that the branching
law is discrete by Theorem 1.5, and that the multiplicity of each irreducible rep-
resentation is free owing to the multiplicity-one theorem in [47]. In particular, the
restriction π|G′ is G′-admissible. Then, we shall give a new explicit branching law
that generalizes the Kostant-Schmid formula [71] to the setting of non-compact
subgroups. This subsection is taken from [47].

Throughout this subsection, let G be a non-compact simple Lie group of Her-
mitian type. This means that G is a Lie group locally isomorphic to one of

SU(p, q), SO(n, 2), Sp(n,R), SO∗(2n), E6(−14), E7(−25).

Then, the complexified Lie algebra gC := g ⊗R C is decomposed into irreducible
modules under the adjoint action of K as follows:

gC = kC ⊕ p+ ⊕ p−.

Let t be a maximal Abelian subspace of k, and fix a positive system ∆+(k, t).

Definition 3.5 (unitary highest weight representation). Let (π, V ) ∈ Ĝ. We say
(π, V ) is an irreducible unitary highest weight representation, if V p+ 6= {0},
where we put

V∞ := the set of smooth vectors of V,

V p+
:= {v ∈ V∞ : dπ(X)v = 0 for any X ∈ p+}.

5It is remarkable that the dimension of the space of global solutions on a non-compact

manifold becomes finite in this case. The relation between the dimension of global solutions and
the underlying geometry might be interesting to study, as is Atiyah-Singer’s index theorem for

elliptic differential operators on compact manifolds.
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Then, K acts on V p+
because Ad(K) stabilizes p+. It turns out that V p+

is irre-
ducible as a K-module. Furthermore, an irreducible highest weight representation
(π, V ) of G is determined uniquely by the K-module structure on V p+

. We write
V G(µ) for the irreducible highest weight representation (π, V ) of G, if µ ∈

√
−1t∗ is

a highest weight of the K-module V p+
with respect to the positive system ∆+(k, t).

We use this notation also for other Lie groups G′ of Hermitian type.
We say that V is of scalar type if dimV p+

= 1. If the highest weight representa-
tion V is realized in a closed subspace of L2(G), we say V is a holomorphic discrete
series representation. Holomorphic discrete series representations were discovered
in an early stage of unitary representation theory by Harish-Chandra and have been
best-understood among discrete series representations of G.

Suppose an involution τ ∈ Aut(G) stabilizes K and acts holomorphically on the
Hermitian symmetric space G/K. We define a subgroup of G by

Gτ := {g ∈ G : τg = g}.

Analogous notation V τ will be applied to denote the set of fixed points of τ if τ
acts on a vector space V . We define the subgroup

G′ := Gτ0 ,

by the connected component of Gτ containing the identity. Then G′ is a reductive
subgroup, and (G,G′) forms a semisimple symmetric pair. For example, the pairs
(Sp(n,R), U(p, q)) and (Sp(n,R), Sp(p,R)× Sp(q,R)) (p+ q = n) are the cases.

Let
{ν1, ν2, . . . , νk}

be a maximal set of strongly orthogonal roots in ∆((p+)−τ , tτ ). Then one can show

k = R- rankG/Gτ ,

the real rank of a semisimple symmetric space G/Gτ , or equivalently, of G/G′. For
example, k = min(p, q) if (G,G′) = (Sp(n,R), Sp(p,R)× Sp(q,R)).

Theorem 3.6 (a generalization of the Kostant-Schmid formula; [47]). In the above
setting, let V G(µ) ∈ Ĝ be a holomorphic discrete series representation of scalar type.
Then we have the following branching law of the restriction V G(µ)|G′ :

(3.6.1) V G(µ)|G′ '
∑⊕

a1≥···≥ak≥0
aj∈N

V G
′
(µ|tτ −

k∑
j=1

ajνj),

where the right side is a discrete direct sum of irreducible unitary representations
of G′.

In the above theorem, if G′ is non-compact, then each V G
′
(∗) is infinite dimen-

sional.
Theorem 3.6 includes the following known results as special cases:

(i) The formula due to Hua(classical)-Kostant(unpublished)-Schmid [71] corre-
sponds to the case where G′ is a maximal compact group K. Then V K(∗) is
finite dimensional.

(ii) G′ is non-compact. Some special cases have been known, including the cases
G = SU(2, 2), SU(2, 1). See, for example, Jakobsen and Vergne ([22]) and
Xie ([79]).
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3.C. Unipotent representations and discrete branching laws.
There is another special case where the restriction has been studied extensively,

that is, the local theta-correspondence (cf. Example 1.3). Then the restriction π|G′
is concerned with the case where π is the Segal-Shale-Weil representation of the
metaplectic group G = Mp(n,R) and (G,G′) is a reductive dual pair. The Weil
representation is an example of the minimal unipotent representation of the split
group G of type C. Branching laws of unipotent representations of other groups
have been studied in the last decade. Some explicit branching laws of unipotent
representations include:
•) G is of type D, due to Kobayashi and Ørsted (discretely decomposable branch-

ing laws, 1991). See also [53], [88] for a more general case with continuous
spectrum.

•) G is an exceptional group with real rank 4, due to Gross and Wallach (dis-
cretely decomposable branching law, [16]),

•) G is of type E, due to J-S. Li (discretely decomposable branching law, [57]).
As above, these branching laws have been studied mainly in the case where they

are discretely decomposable. Here are some advantages of discrete decompositions:

(3.C.1) From the viewpoint of finding explicit branching laws, branching laws are
less difficult to find, if there is no continuous spectrum, because one can use alge-
braic techniques.
(3.C.2) From the viewpoint of the study of Ĝ′ (smaller group), discrete spectrum
is useful because it gives an explicit construction of irreducible unitary represen-
tations of the subgroup G′.
(3.C.3) From the viewpoint of the study of Ĝ (larger group), discrete branching
laws give a clue to study representations of G in terms of G′ (e.g., a special case
G′ = K gives a theory of (gC,K)-modules).

The study of branching laws of unipotent representations is still in an early
stage, and there seems to be much room for further developments. For example,
the following directions of research may be considered:
a) A finer study of unipotent representations by means of branching laws (see
(3.C.3)).
b) Construction of singular unitary representations as irreducible summands (see
(3.C.2)).
c) Global analysis on manifolds (especially, on homogeneous spaces) arising from
branching laws of unipotent representations (e.g. [88]).
d) Combinatorial problems arising from algebraic study of discretely branching
laws (cf. (3.C.1)).

3.D. Representations as a quantization of elliptic orbits and discrete
branching laws.

An elliptic orbit is an adjoint orbit of G through an element X such that ad(X)
is diagonalizable with purely imaginary eigenvalues. Any elliptic orbit carries a
G-invariant pseudo-Kähler structure, and its “geometric quantization” gives an ir-
reducible unitary representation of G, as was suggested by the Kirillov-Kostant
orbit method, and as was proved by Schmid and Wong combined with algebraic
results due to Vogan, Wallach and Zuckerman, under certain regular and inte-
gral conditions on X. We note that its Harish-Chandra module is expressed as
Zuckerman-Vogan’s derived functor (gC,K)-modules (sometimes called Aq(λ), see
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[26]).
In the previous exposition [36], we gave a survey on the construction of these rep-

resentations in details from the viewpoint of geometric quantization and discussed
the discrete decomposability of the restriction to subgroups.

We also wrote in [35], Part I and in [37], some explicit branching laws of (small)
discrete series and some more general representations Aq(λ) for classical symmetric
pairs (G,G′) such as

(G,G′) = (SO(p, q), SO(m)× SO(p−m, q)), (O(2p, 2q), U(p, q))

in the framework of G′-admissible restrictions. So we do not repeat ourselves here.
Let us just mention some new progress after [36] was written. By using Theorems

1.5 and 2.10, we now have a necessary and sufficient condition for the restric-
tion π|G′ to be infinitesimally discretely decomposable if π is Zuckerman-Vogan’s
derived functor module. This was proved in [49], which strengthens the result in
the previous exposition ([36], Theorem 6.5).

Discretely decomposability of the restriction of Zuckerman-Vogan’s derived func-
tor modules will be particularly important in applications in §4.B and §4.C below.

§4. Applications of admissible restrictions

4.A. Branching laws and geometry.
Historically, branching problems of unitary representations have been motivated,

not only by representation theory itself, but also by other fields, for instance, mathe-
matical description of breaking symmetries in quantum mechanics, theta correspon-
dence in automorphic forms and so on.

In this section, we shall discuss new interactions between branching problems
and related fields, which have been discovered in 1990s, especially, connected with
discrete branching laws. The following principle was advocated in [37]:

If representations help in the understanding of objects,
so do branching laws of representations in that of morphisms.

By simplifying settings for the exposition here, this principle may be explained
as follows. First, without group actions, let us consider the correspondences:

geometry of X ⇔ function space Γ(X),

map f : Y → X ⇔ pullback f∗ : Γ(X)→ Γ(Y ).

Next, let G′ be a subgroup of G. Suppose that G acts on X and G′ on Y so that f
is G′-equivariant. Then, the above correspondences are enriched by group actions:

geometry of G-space X ⇔ representation of G on Γ(X),

G′-equivariant map f : Y → X ⇔ restriction of the representation Γ(X) to G′

+G′-intertwining map f∗ : Γ(X)→ Γ(Y ).

Thus, the knowledge of the restriction of representations of G to G′ should be
transferred to some information on the original map f .

In this section, we shall illustrate this principle without technical details in the
settings where restrictions of unitary representations appear in a somewhat unex-
pected way. We shall also try to explain how and why discretely decomposable
restrictions play a crucial role there.
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4.B. A vanishing theorem for modular varieties.
In this subsection, we explain an application of our criterion for discretely decom-

posable restrictions (Theorem 1.5) to a differential geometric problem on modular
varieties. Roughly speaking, a modular symbol is the homology class in a locally
Riemannian symmetric space (sometimes called a Clifford-Klein form) determined
by the cycle induced by a subgroup. For example, a geodesic cycle in a closed
Riemann surface with genus ≥ 2 represents a modular symbol.

More generally, we consider the following setting:

G′ ⊂ G : a pair of connected linear reductive Lie groups,

K ′ ⊂ K: maximal compact subgroups of G′ ⊂ G,

Γ′ ⊂ Γ : cocompact torsion-free discrete subgroups of G′ ⊂ G,

such that K ′ = K ∩G′ and Γ′ = Γ ∩G′. Then, both of the double cosets

X := Γ\G/K and Y := Γ′\G′/K ′

are compact, orientable, locally Riemannian symmetric spaces. The inclusion G′ ↪→
G induces a natural map:

ι : Y → X.

The image ι(Y ) is called a modular variety. It is totally geodesic in the Riemannian
manifold X because the subgroup G′ is reductive in G. We put

m = dimY (= dimG′/K ′).

Then, the fundamental class [Y ] generates the homology group Hm(Y ;Z) of degree
m. Consider the induced homomorphism of homology groups of degree m:

ι∗ : Hm(Y ;Z)→ Hm(X;Z).

The modular symbol is defined to be the image ι∗[Y ] ∈ Hm(X;Z) (see Ash and
Borel [2]). Though its definition is simple, the understanding of modular symbols
is usually difficult.

In order to see how the discrete decomposability of the restriction G ↓ G′ (see
§§1 and 2) affects a topological property of modular varieties, we consider a special
example where

(G,G′) = (SO0(2n, 2), SO0(2n, 1)).

Then, dimG′/K ′ = 2n, and the modular symbol ι∗[Y ] is an element of the homology
group of degree 2n, of a 4n-dimensional locally Riemannian symmetric space

X = Γ\SO0(2n, 2)/(SO(2n)× SO(2)),

of which the universal covering is the bounded symmetric domain of type IV. In
particular, X is a Kähler manifold. Since X is compact and orientable, we can re-
gard the modular symbol as an elementM(Y ) of the cohomology group H2n(X;C)
via the Poincaré duality. Let

Mp,q(Y ) ∈ Hp,q(X;C)
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be its Hodge component of type (p, q) such that p + q = 2n. Then, since X is
Kähler, we have

M(Y ) =
∑

p+q=2n

Mp,q(Y ).

Thus, the Hodge components {Mp,q(Y ) : p+ q = 2n} give a finer structure of
modular symbols. Takayuki Oda conjectured a vanishing theorem of the middle
Hodge componentMn,n(Y ), from a viewpoint of automorphic forms (see [66]). This
conjecture has been solved in [52] by using our criterion of discrete decomposable
restrictions (Theorem 1.5).

Theorem 4.1 (Hodge component of the modular symbol). There exists a universal
element η in the cohomology group Hn,n(X;C), such that

Mn,n(Y ) =
volume of Y
volume of X

η.

Here, “universal” means that the element η is given in terms of Lie algebras ex-
plicitly, and does not depend on Γ. In particular, η is contained in the image of the
canonical map

Hn,n(g,K;C)→ Hn,n(X,C).

Theorem 4.1 follows from a general vanishing theorem [52] of modular symbols
for a pair (G,G′) of reductive groups. The key point there is that the integration
of a harmonic form ω over Y becomes zero if ω comes from an infinite dimensional
irreducible unitary representation π of G such that the restriction π|G′ is discretely
decomposable. Then, for the latter condition, we can use a criterion given in
Theorem 1.5.

More precisely, what we need in the above special case is the following
representation-theoretic result: the restriction π|K′ isK ′-admissible for any π ∈ Ĝ if
Hn,n(g,K;πK) 6= 0. This statement follows from an easy computation of Theorem
1.5.

Instead of an explanation of further technical details, we give the flavor of the
proof by the following diagram that compares relevant results where the discrete-
ness of spectrum plays an important role in the understanding of topology in
other settings (see [42] for more details).
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Discreteness of spectrum ⇒ Geometry ⇔ Function spaces
(representations)

X: compact Riemannian manifold
Laplacian ∆X has only discrete

spectrum in L2(X)

⇒ Hodge theory

topology ⇔ harmonic forms

⇓ refinement

L2(Γ\G) is decomposed
into a discrete direct sum of Ĝ
(Gel’fand-Piateski-Shapiro, [15])

⇒ Matsushima-Murakami formula
[8], [61] (1960s)

⇓ (object ⇒ morphism)

Criterion for discrete decomposable
restrictions of Aq(λ) to subgroups

(Kobayashi, [44])

⇒ Vanishing theorem
of a modular symbol
(Kobayashi-Oda, [52])

Here Matsushima-Murakami formula describes the cohomology groups of a locally
Riemannian symmetric space in a representation-theoretic way (study of objects),
and Oda-Kobayashi vanishing theorem concerns maps between locally Riemannian
symmetric spaces (study of morphisms).

4.C. Application to non-commutative harmonic analysis:
Construction of new discrete series representations

for non-symmetric spaces.
Suppose a homogeneous space G/H carries a G-invariant Borel measure. This

is the case if (G,H) is a pair of reductive Lie groups in the sense that G is a
reductive Lie group and H is a closed subgroup which is reductive in G. Then
we have a natural unitary representation of G on the Hilbert space L2(G/H). We
say π is a discrete series representation for G/H, if π ∈ Ĝ is realized in a closed
subspace of L2(G/H), equivalently, if the space of continuous intertwining operators
HomG(π, L2(G/H)) 6= {0}. Harish-Chandra’s discrete series representation π is
the case where H = {e}. A discrete series representation corresponds to a discrete
spectrum in the Plancherel formula, namely, the irreducible decomposition of the
unitary representation L2(G/H).

Discrete series representations are regarded as realizations of irreducible repre-
sentations, through which infinite dimensional representation theory interacts in a
lively way with global analysis. Discrete series representations are not only a fun-
damental object in non-commutative harmonic analysis, but also play important
roles in the following topics.

(1) Construction of tempered series representations. Plancherel theorems for
group manifolds and semisimple symmetric spaces have been discovered by
Harish-Chandra, Delorme, van den Ban, Oshima, Schlichtkrull and others.
The support of the Plancherel formula consists of tempered representations
which are obtained as the cuspidal parabolic induction of discrete series
representations for smaller symmetric spaces ([12], [18], [68]).
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(2) Topology of locally Riemannian symmetric spaces (e.g. a non-vanishing
theorem of modular symbol due to Tong and Wang [73]).

(3) Obstruction of the injectivity of Lp-Pompeiu problem in integral geometry;
see [11] for simply connected solvable Lie groups; see [72] for SL(2,R); see
[45], Theorem 1.2.17 for general reductive Lie groups and their homogeneous
spaces.

(4) A part of “isolated” irreducible unitary representations in the Fell topology
(for example, [70]).

4.C.1. Current status on discrete series representations.
As the above observation indicates, the following is one of fundamental problems

in non-commutative harmonic analysis:

Problem 4.C.1.
1) Find a condition on the pair of groups (G,H) under which there exists a discrete
series representation for the homogeneous space G/H.
2) If they exist, construct and classify discrete series representations for G/H.

These problems have not been solved in the general setting where (G,H) is a
pair of real reductive Lie groups. Here are some special cases where answers are
known:
i) The case where G/H is a semisimple Lie group, namely, H = {e}. Discrete
series representations exist if and only if rankG = rankK. All discrete series
representations are classified by Harish-Chandra. Geometric constructions of dis-
crete series representations were studied by Atiyah, Hotta, Langlands, Okamoto,
Parthasarathy, Schmid and others. Algebraic constructions were also studied by
Enright, Vogan, Wallach, Zuckerman and others.
ii) The case where G/H is a semisimple symmetric space. Discrete series rep-
resentations exist if and only if rankG/H = rankK/(H ∩ K). They have been
constructed by Flensted-Jensen and Oshima-Matsuki. The classification has been
almost done, but certain subtle problems such as non-vanishing conditions and
multiplicity-one conjecture have not been completed, at least not in the literature.

The group case (i) can be regarded as a special case of (ii) by putting (G,H) =
(G1 ×G1,diagG1). We refer to a survey [36], §4 and the references therein for (i)
and (ii), and for more general results (e.g., vector bundle cases).
4.C.2. Relation to the discrete branching law.

The known methods used in (i) or (ii) are powerful, but they valid only in limited
cases, namely, only for semisimple symmetric spaces. For instance, one of the key
methods for the analysis on symmetric spaces is the Flensted-Jensen duality [14],
which can be defined only when G/H is a symmetric space. Consequently, we need
to a completely new machinery for the analysis on a more general homogeneous
space.

To construct new discrete series representations, our idea here is based on the
restriction of unitary representations. We will explain a rough idea of how the proof
goes (see [37] and [46] for precise formulation and some concrete examples):

Step a) Suppose G/H is a homogeneous space, on which we want to construct

discrete series representations. We embed G/H into a larger space G̃/H̃ for which
harmonic analysis is well-understood (e.g., G̃/H̃ is a group manifold or a symmetric
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space):
ι : G/H ↪→ G̃/H̃.

Then, we consider the pullback of functions (or possibly, after taking finitely many
normal derivatives):

ι∗ : C∞(G̃/H̃)→ C∞(G/H), f 7→ f ◦ ι.

Step b) Take an irreducible G̃-representation π in C∞(G̃/H̃) and pick up a func-

tion f on G̃/H̃ that belongs to a representation space of π. We expand the re-
striction ι∗f into irreducible components (say, (ι∗f)λ for λ ∈ Ĝ) as representations
of the subgroup G according to the branching law of the restriction π|G, and then
estimate the asymptotic behavior of each component (ι∗f)λ along the submanifold
G/H at infinity (see [46]).
Step c) Find the asymptotic behavior of the measure on G/H, and compare the

asymptotic behavior of measures at infinity between G/H and G̃/H̃ (see [43]).

If the image of ι is a generic orbit (e.g., a principal type orbit in the sense of
Richardson), we do not need steps (b) and (c), and we can construct discrete series
representations by an elementary argument (this case was previously carried out
for some special homogeneous spaces in [21], [35], [37], [56]). For instance, by this
approach, one can reduce the classification problem of discrete series representations
of some non-symmetric spherical homogeneous spaces G/H, such as

G/H = SU(n+ 1, n)/Sp(n,R), G2(R)/SL(3,R), · · · ,

to that of discrete spectrum of some branching laws of discrete series representations
of a (larger) space G̃/H̃ ([37]). However, it often happens that non-generic orbits
give more interesting examples (in other words, some homogeneous spaces G/H
can be embedded into G̃/H̃ only as non-generic orbits, and then steps (b) and (c)
become necessary.

In step (b), if the branching law is discretely decomposable when restricted
from G̃ to G, then one can prove that the asymptotic behavior of each irreducible
component (ι∗f)λ has a nice decay inherited from that of the function f (see [46],
§3). Consequently, if f satisfies an appropriate asymptotic decay on G̃/H̃, then each
non-zero irreducible component (ι∗f)λ generates a discrete series representation for
G/H. We remark that the assumption of discrete decomposability is crucial because
such a nice decay cannot be expected if π|G contains continuous spectrum.

Let us give a few comments on step (c). We note that a reductive homogeneous
space G/H does not always have a polar coordinate (for a special G/H such as a
symmetric space, there is a polar coordinate G = KAH and accordingly we have an
integration formula on G/H essentially on the Abelian group A). The absence of
polar coordinates causes difficulties in explicitly describing the asymptotic behavior
of the G-invariant measure on G/H at infinity. The idea of [47] for step (c) for a
non-symmetric space G/H is to avoid working on the pseudo-Riemannian manifold
G/H (right coset space) itself, but to lift it to a larger dimensional non-homogeneous
space K×(p/p∩h) where we can employ a comparison theorem of negatively curved
Riemannian manifold K\G (left coset space).
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By using steps (a), (b) and (c), we can prove that there exist infinitely many
discrete series representations on homogeneous spaces such as:

G/H = Sp(2n,R)/(Sp(n0,C)×GL(n1,C)× · · · ×GL(nk,C)),

where (n0, n1, · · · , nk) is an arbitrary partition of n. We note that the above G/H
is a symmetric space if and only if

n1 = n2 = · · · = nk = 0,

in the above example. The existence of discrete series representations were previ-
ously known by Flensted-Jensen [14] only in this special case.

It should be noted that the above approach deals with a family of homogeneous
spaces of G simultaneously, rather than a single homogeneous space alone. The
point here is that different homogeneous spaces of G can arise as G-orbits on G̃/H̃.
For instance, the above homogeneous space

G/H = Sp(2n,R)/(Sp(n0,C)×GL(n1,C)× · · · ×GL(nk,C)),

for an arbitrary partition
n = n0 + · · ·+ nk

arises as a G-orbit on

G̃/H̃ = (Sp(2n,R)× Sp(2n,R))/diag(Sp(2n,R))

(see [46]). Then we can “treat simultaneously” these homogeneous spaces by using
branching laws of unitary representations from G̃ to G. For instance, this explains
the phenomenon that the same representations can occur as discrete series repre-
sentations on certain different homogeneous spaces.

The orbit decomposition G\G̃/H̃ has recently been studied by Iida and Matsuki
[60]. Their description is useful in finding how G/H is embedded into a larger space
G̃/H̃.

The above approach not only gives new discrete series representations on non-
symmetric homogeneous spaces as stated, but also gives a new viewpoint even
for analysis on symmetric spaces, where there is already extensive work in the
literature. For example, we can prove (without using serious results on semisimple
symmetric spaces) the following new geometric theorem, by making use of the
criterion of discretely decomposable restrictions (Theorems 1.5 and 2.4):

Theorem 4.2 (a necessary and sufficient condition for the existence of holomor-
phic discrete series representation on symmetric spaces). Suppose G/H is a non-
compact irreducible symmetric space. Then the following two conditions on (G,H)
are equivalent:
(i) There exist unitary highest weight representations of G that can be realized as
discrete series representations for G/H.
(ii) H/(H ∩K) is a real form of the complex manifold G/K.
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Example 4.3. Let G/H = (SL(2,R)× SL(2,R))/diag(SL(2,R)). We put D :=
{z ∈ C : |z| < 1}, the unit disc. Then the natural embedding H/(H ∩K) ↪→ G/K
is realized as the following map:

D ↪→ D ×D, z 7→ (z, z̄).

In particular, H/(H ∩K) is a real form of G/K; that is, the geometric condition
(ii) is satisfied. Then, Theorem 4.2 gives a new explanation of the well-known fact
that there exist holomorphic discrete series representations of a group manifold
G/H ' SL(2,R).

The result (i) ⇒ (ii) in Theorem 4.2 is new. The opposite direction (ii) ⇒ (i)
was previously proved by a completely different method (Ólafsson-Ørsted [67]).

4.D. Discontinuous groups versus restrictions of unitary representations.
4.D.1. Discretely decomposable restrictions revisited.

Let U(H) be the group of unitary operators on a Hilbert space H, and we
consider an irreducible unitary representation of G realized on H, namely, a group
homomorphism

π : G→ U(H).

The restriction to a subgroup G′ of G is nothing but the composition of the following
group homomorphisms:

(4.4.1) G′ ⊂ G π→ U(H).

If G′ is compact, then the restriction π|G′ is always discretely decomposable. We
have seen in §1 that the restriction π|G′ can be discretely decomposable even when
G′ is non-compact. We may discuss the discrete decomposability of the restriction
π|G′ from the following viewpoint:

“In the infinite dimensional group U(H),
the image of a non-compact Lie group of G′

may behave as if it were a compact group.”

4.D.2. Properly discontinuous actions of discrete groups.
Let us consider a different setting. Let Γ be a topological group acting continu-

ously on a manifold M . We define a subset of Γ by

ΓS := {γ ∈ Γ : γ · S ∩ S 6= ∅},

for a subset S of M . The action of Γ on M is said to be proper [69] if ΓS is
compact for any compact subset S in M ; properly discontinuous if ΓS is finite for
any compact subset S in M . We note that Γ acts properly discontinuously if and
only if Γ is discrete and acts properly on M .

A typical example of properly discontinuous actions is the covering transforma-
tion of the fundamental group on the universal covering space. Conversely, if a
torsion-free discrete group Γ acts on a manifold M properly discontinuously, then
there is a natural manifold structure on the space of Γ-orbits, denoted by Γ\M ,
and the quotient map M → Γ\M becomes a covering map.
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We observe that the action of Γ on M is written as a homomorphism from
Γ to the group Diffeo(M) of diffeomorphisms of M , or the group Homeo(M) of
homeomorphisms of M :

Γ→ Homeo(M).

The action of a finite group are always properly discontinuous. Then, again, prop-
erly discontinuous actions may be discussed from the following viewpoint

“In the infinite dimensional group Homeo(M),
the image of a discrete group Γ

may behave as if it were a compact (or finite) group. ”

4.D.3. Restriction of unitary representations and proper actions.
The above two cases are summarized as follows:
Actions of finite groups are obviously properly discontinuous. It can happen

that actions of infinite groups are still properly discontinuous, such as covering
transformations.

On the other hand, branching laws of compact groups are always discretely
decomposable, and it can happen that branching laws with respect to non-compact
subgroups are still discretely decomposable.

Comparing these two examples, one might ask the following question:

Question. Is there any relation between “discrete decomposability of branching
laws of unitary representations of Lie groups” and “properly discontinuous actions
of discrete groups”?

As a special case, let us consider the setting where a Lie group G acts transitively
on M . Let H be the isotropy subgroup at a point x0 of M . Then we have a natural
homeomorphism G/H ' M, gH 7→ gx0. Then a discrete subgroup Γ of G acts on
M by the left translation. This means that we have a group homomorphism:

(4.4.2) Γ ⊂ G→ Diffeo(G/H).

We shall compare the two settings (4.4.1) and (4.4.2) below.
4.D.4. Criteria— discretely decomposable representations

and properly discontinuous actions.
Without proof and precise formulation, we give a brief summary of the following

known criteria:
(i) In the setting (4.4.1), a sufficient condition for the discrete decomposability of

the restriction π|G′ was given in Theorem 1.5, roughly in the following form:

(the cone determined by G′) ∩ (the cone determined by π) = {0}.

(ii) In the setting (4.4.2) (with Γ replaced by G′), a necessary and sufficient condition
for a reductive subgroup G′ on the homogeneous space G/H to act properly was
proved by the author in 1989 [27]:

(the linear subspace determined by G′)

∩ (the linear subspace determined by H)

= {0} modulo the action of a finite group (Weyl group).
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(iii) In the setting (4.4.2), a necessary and sufficient condition for the action of a
discrete subgroup Γ on the homogeneous manifold G/H to be properly discon-
tinuous is given in the following form:

{a subset determined by Γ} ∩ {a tube determined by H}
is relatively compact modulo the action of a finite group (Weyl group).

This criterion generalizes [27] and was proved independently by Benoist [4] and
Kobayashi [39].

4.D.5. Actions of discrete groups and branching laws
of unitary representations.

In the previous subsection, (i) concerns an analytic representation theory (dis-
creteness of spectrum), and (ii) and (iii) concern topological problems (proper ac-
tions). Accordingly, the objects and methods employed there are completely dif-
ferent. However, the criteria themselves are apparently similar to one another, and
may suggest a relationship in the following diagram:

(iii) Discrete version:

Properly discontinuous actions
of discrete groups

↓↑

(ii) Continuous version: Proper actions of connected Lie groups

↓↑

(i) Representation theory:

Discrete decomposable restrictions of
unitary representations of Lie groups

In fact, a first non-trivial example (see [28]) of the discrete branching laws of
the restriction π|G′ (i.e., π is not a highest weight representation, and G′ is not
compact) was inspired by the above diagram (see also §0). More precisely, the idea
of [28] consists of the following four steps:
Step a) First, take a uniform lattice6 Γ for the semisimple symmetric space G/H
(see [27] for the construction).
Step b) Take the Zariski closure of Γ in G, for which we write G′.
Step c) Take a discrete series representation π(∈ Ĝ) for G/H (see [14] for the
construction).
Step d) Find branching laws of the restriction π|G′ .

6In contrast to Borel’s theorem [7] on the existence of a uniform lattice of an arbitrary Rie-
mannian symmetric spaceG/H, there does not always exist a uniform lattice for a non-Riemannian

homogeneous manifold (for example, a semisimple symmetric space). Even the so-called Calabi-

Markus phenomenon [10] occurs if H is non-compact. We refer to [41] for an exposition to
discontinuous groups on non-Riemannian homogeneous manifolds, developed rapidly in the last

decade.
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A simplest example is given in the following setting:

G/H = SU(2, 2)/U(2, 1) (an open subset of P 3
C),

G′ = Sp(1, 1) ' Spin(4, 1) (de Sitter group),

Γ is a uniform lattice of G′ = Sp(1, 1),

π is a discrete series representation for G/H.

We note that the above representation π has the Gel’fand-Kirillov dimension 5
and is not a highest weight representation. Then the restriction π|G′ turns out to
be discretely decomposable (see [36], Example 3.3). As we mentioned (see The-
orem 1.5), the discrete decomposability of the restriction was later formulated in
terms of representation theory, apart from the above setting on global analysis on
homogeneous spaces.

The above setting also gives an example of an interesting Riemannian structure g
on a 6-dimensional simply connected manifold M = G/H: (M, g) is a non-compact
covering of a compact Riemannian manifold, and there exist L2-eigenfunctions of
the Laplace-Beltram operator (related problems have been studied by Sunada [29],
[64]).

With regard to Step (a), the following has been studied intensively in the last
decade:

Problem. Does a pseudo-Riemannian homogeneous manifold admit a uniform lat-
tice?

Various approaches to this problem include the structural results of Lie groups,
a criterion of proper actions of non-compact Lie groups, cohomology groups of dis-
crete groups, characteristic classes, symplectic geometry, ergodic theory, and the
restriction of unitary representations, etc., by Benoist, Corllette, Labourie, Mar-
gulis, Oh, Ono, Witte, Zimmer and the author after a general theory ([27], 1989)
(see [4], [5], [30], [32], [33], [34], [39], [41], [48], [59], [65], [80]). In particular, a
recent method due to Margulis [59] is based on the asymptotic behavior of matrix
coefficients of the restrictions of unitary representations, which should merit fur-
ther study, as it might strengthen a tie between unitary representations and
discontinuous groups.

In the above diagram, the last ↓↑ is just a guiding principle, and a rigorous
formulation is not known. It is mysterious to me if there is an intrinsic inter-
action between properly discontinuous actions and branching problems of unitary
representations, especially discretely decomposable restrictions.
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147 (1998), 412–452.

[13] T. Enright, R. Howe and N. Wallach, A classification of unitary highest weight modules,
Representation theory of reductive groups, Progress in Math., vol. 40, Birkhäuser, 1983,
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