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1. Notation
g real simple Lie algebra, Cartan involution 6.
Cartan decomposition: g =t ® ».
g, € and pc.
o Is conjugation of g, w.r.t. g.
G Is the adjoint group of gc.
G, K, Kc conn. subgps corr. to g, ¢, .
€2 a nilpotent G-orbit in g.

O a nilpotent K-orbit in p..



Kostant-Sekiguchi correspondence
Definition. (orbit “cores”

C(Q2) :=
{F € Q|3 sI(2)-triple {H,E,F} Cg, 0(F) = —F}.

C(O) .=
{e € O|3 normal sI(2)-triple {x,e, f} C gg, o(e) = f}

C(2) (resp., C(O)) is a single K orbit.

The correspondence:
H—i«(FE+ F) L
2 l

QDOC(R)3E— K- Oo

(2, Oq) is said to be a KS-pair.



Properties of Kostant-Sekiguchi pairs

Let (€2, O) be a KS-pair.

(1) dimRQ = dimR O.

(2) 2 and O lie in the same G orbit, O¢.

(3) O is a Lagrangian submanifold of Oc¢.

(4) (Vergne) 3 K-equivariant real analytic iso-
morphism, V : Q2 — O.

(5)(Barbasch and Sepanski)

QL CQy — O C Oy



How does the correspondence affect other
invariants of (2 and O that are significant
in representation theory?



The Big Picture

v
2 s O
symplectic manifold quasi-affine variety
Hamiltonian K-space algebraic K -action

Invariants
N\
K-rank K-rank

K-corank KC—compIexity



Notions of rank

rank of K-action on @, rx(2):=rank K - rank KE
where E' € Q and the orbit K - E’ is generic.

R[O] denotes the ring of regular functions on
O. If A € K, R[O], is the M-isotypic component.
mp(A) is the multiplicity of A in R[O].

r(0) (= {\ € f{\|R[O]>\ #= (0)} is a finitely
generated semigroup in the set of dominant
weights of K.

The rank of the K action on O is the rank of
(O). It is denoted rKC(O).




The corank of the K action on 2

Let wo be the canonical symp. form on €2 and
P Q2 — £ denote the moment map.

Lemma. Let E' € Q. Set W =Tr/(K-E'") and
W+ equal to the orthogonal complement (with
respect to wqlp) of W inside Tri/(S2). Then
Tr(2) is a sum of symplectic vector spaces:

Wnw-i Wwnwl
where,

(1) e®PE) pE ~ W nwL (as e modules) and

(2) t/e®P(E) ~ W (as &' modules).
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Proposition. (Vinberg)
4 open dense subset U C 2 such that for all
E' € U, the non-negative integer

Trp(K - E')*
Te(K - E') N Tr(K - BN

dim

has a constant value. We denote this value by
2¢(2). The integer 2¢;(2) is said to be the
corank of the action of K on X2.

Remark. If e (2) = 0, Q2 is said to be multi-
plicity free as a Hamiltonian K-space (that is,
Ty(K - E") is coisotropic in Tg/(2) for a dense
open subset of elements of 2).



Multiplicity-free Hamiltonian K-spaces

Let X be a Hamiltonian K-space; C®(X)¥
be the Poisson algebra of K-invariant smooth
functions on X; and A(X)X be the Poisson al-
gebra of K-invariant real analytic functions on
X.

Guillemin and Sternberg have shown:

X is mult. free <— C>®(X)® is comm.

¢ (€2) “should” measure the failure of C°(Q)&
to be commutative. We can show that €x(2)
is a “rough” measure of the failure of A(Q)X
to be commutative.
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Definition. Let d = do be the maximum di-
mension of a K-orbit in 2 and dg, denote the
maximum dimension of a K-orbit in ®(2).

Qs={E' € Q|dimK -E' =d}
Qe ={E' € QdimK - -d(E") =de}

= {F' ¢ Q|dim*E) js minimum}.

Remark. The subset U in the proposition on
slide 9 can be chosen so that U C 2;,N Q.
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The complexity of the K, action on O

Definition. If By C K, is a Borel subgroup,
then the cKC(O), the complexity of the K,
action, is the codimension of a generic Bg-orbit
in O. It is also the transcendence degree over
C of the field of Bg-invariant rational functions
on Q.

Proposition. (Panyushev) ¢ = cKC(O) is the
smallest non-negative integer such that for all
Ael(O):

mo(n\) grows no faster than n® as n — oo
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Spherical nilpotent orbits

Definition. If cKC((’)) = 0, O is said to spher-
ical (for Kg).

(McGovern and Panyushev) Classification of
spherical orbits for g simple and complex.

(King, 2003) Classification of spherical orbits
for g simple and real.
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2. Main Theorem

Theorem. Let (2,0) be a Kostant-Sekiguchi
pair, then

() i (0) = ri(Q);

(b) cxe, (0) = Ex ().

Corollary. (King, TAMS (2002))
€2 is multiplicity free <— O is spherical.

Example. When g is simple, the minimal non-
zero S2 is multiplicity free, and Oq Is spherical.
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Motivation

1. The previous corollary.

2. I. V. Mykytyuk’s result:

2(T"(G/K)) = e (Go/Ko),

where K and G are compact groups, K C G ,
and K and G are there complexifications.

Actions of Borel Subgroups on Homogeneous
Spaces of Reductive Complex Lie Groups and
Integrability, preprint, 2001.
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Ingredients in the proof of main theorem

1. The Vergne real analytic isomorphism

2. Results of Schmid and Vilonen on the K
structure of O

3. Results of Panyushev on rank and complex-
ity of K actions

4. Results of A. T. Huckleberry and T. Wurzbacher
on K actions on symplectic manifolds
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3. The K structure of O

Let E € C(Q), e € C(O), {H, E, F} & {z, e, f}.
Set s := RH + RE + RF.

Proposition. (Schmid-Vilonen in “Geometry
of nilpotent orbits”)

If Vo(s) = [¢4, el/[¢, e], then 3 K-invariant
real analytic isomorphism:

In addition, thereis an isomorphism of K*® mod-
ules over R:

Vo(s) ~ Ex/gﬁ b 7.
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4. Proof of Main Theorem

The spaces ¢¥/¢° and Z appear in results of
Panyushev on the rank and complexity of O.

Thus one can compute np = np, g, the real
codimension of the largest K-orbit in O, in
terms of the rank and complexity, i.e., on the
one hand,

no = ri_(0) + 2cx_(0). (1)

Proof. Combine results of Schmid-Vilonen with
those of Panyushev. [ ]
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Another formula for np

Clearly, np = nq. Recall the vector space dec.
of Ty(Q2) in terms of W = Tpi(K - E'):

i an ((WmWL) o (WQWL)*) D w-
Wnw-t Wnw-t
where,

(1) e2E) /e ~ W nwt (as tE' modules) and

(2) £/ePE) ~ erwva (as €& modules).
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dim Q = dim Tr/($2)

WJ_

= 2dim (e®E) /eE") + dim (£/e®ED) + dim T

— Air b P(E)  4ion P : TI oL : wi
= dimé® dime¢” +dimeé—-dim¢e —I—dlrnwﬁwi

One shows that for a dense open subset U C <2,
E' ¢ U implies:

dim £PE) _ dim e?’ = rank £€2F) _rank £ = T (2

and

WJ_
dim = 2 (€2).
WﬂWJ‘ EK( )
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The preceding facts depend on work of Huck-
leberry and Wurzbacher.

One concludes that

no = rr(2) + 2ex (). (2)

Once it is shown that rx(2) = rKC(O), it fol-
lows from (1) and (2) that ex(2) = cKC(O).
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5. Commutativity of A(Q)£

Definition. Suppose M is a smooth manifold
andpe M. fq1,...,fn € C®°(M) are function-
ally independent at p ifdf1, ... ,dfn are linearly
independent at p.

Let 3 = Z (QL(Q)ffa) denote the center of the
Poisson algebra 2A(Q)E .

Definition. Let ai(S2) be the largest non neg-
ative integer o such that 4 dense open set
U C Q and f1,..., fa € A(DE such that:

(1) f1,...,fo are f.i. at each p in U’ and

(2) no nontrivial linear combination of the f;
belongs to 3.
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Remark. o = ai(2) is well defined since the
intersection of any two dense open sets is open
and dense. Clearly o < dim 2.

a () is a measure of the size of A(Q)E rel-
ative to its center. In fact, ag(2) = 0 <«<—
€2 is multiplicity free.

a(S2) is related to €x(2) because:

Proposition. Letn = n;q i) be the codimen-
sion of a K-orbit of maximal dimension in S2.
3 open dense subset U? C Q and fq,..., fn in
A(Q)E which are f.i. on Ut.
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More on the Poisson algebra C®(Q)#

Definition. f ¢ C®°(2) is collective if f =
go d for some g € C®°(¢*). B denotes the
space of collective functions.

For f € C*°(£2), X, denotes the Hamiltonian
vector field associated to f by wo. That is, for
all smooth vector fields Y on :

(V) = wa(Y, Xp).

C>°(£2) is a Poisson algebra under the Poisson
bracket {-, -} defined as follows. For f, g €
C>® (),

{fa g}:wQ(Xfa Xg)
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Since C°(Q)¥ is the centralizer of B in C®(),
the proposition on slide 23 implies:

Lemma. For E' in a certain dense open subset
of Q and W =Tr(K - E') :

(a) W is spanned by: {X;(E")|f € B}.
(b) W is spanned by: {X¢(E")|f € AL}

(c) If Mg denotes a complement of W N W+
in WL, then My is spanned by:

(X (EN|feUr,, &3}
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Unfortunately, we only have:

ak (§2) > 2ex(2).

However,
Theorem. Ifs = 2¢i(S2), 3 open dense subset
U* of Q, s.t. for some fq,...,fs € AL :

(1) f1,...,fs are f.i. on U™,

(2) no nontrivial linear combination of the f;
belongs to 3; and

(3)Vpe U*, f1,...,fs are f.i. of B at p.
s IS the largest integer for which 3 s functions

fi,-..,fs € AKX and an open dense subset U
satisfying (1), (2) and (3).
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Finally, we obtain:

Corollary. Let (2, ©O) be a KS-pair, then 2cKC(O)
is the largest integer n s.t. 3 f1,...,fn € AL
satisfying (1), (2) and (3) of the previous the-
orem (on slide 26).

Thus, in a weak sense, the integer cKC(O)
measures the failure of the Poisson algebra of
K-invariant real analytic functions on €2 to be
commutative.
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6. An application to the G-saturation of
the nilradical of a par. sub. of g

Proposition. Let (2, O) be a KS-pair. Sup-
pose that P= MAN C G (withp=m®adn)
s.t. €2 is an open subset of G-n. Then

(a) cg (O) = cg (Kg/Mg) and

(b) 1 (O) = 1R (Kc/Mg).

Remark. Theinteger cKC(KC/MC) can be cal-
culated by a result of Heckman.

Example. g = sl(n, R). For each Q2 there is
a p such that 2 is open in G -n. Therefore,
the complexity and rank of the corresponding
K-orbit O can be computed.
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Some related open questions

1. For general O, determine TKC(O) and
cKC(O).

2. Find a set of generators for M(0O). (For
g simple and complex, these generators have
been found by McGovern.) The orbit method
suggests that

F(O) C v—-1d(2) N positive Weyl chamber

3. Determine IM(©), F(O), and r(O").
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