Complexity of nilpotent orbits and the Kostant-Sekiguchi correspondence

Math.RT/0303096

Donald R. King

Mathematics Department Northeastern University Boston, MA 02115

NORTH 6, 2004, Fuji-Zakura So, Japan

Outline of Talk

- 1. Notation, basic facts and definitions
- 2. Statement of Main Theorem
- 3. K-structure of nilpotent orbits (Schmid and Vilonen)
- 4. Proof of Main Theorem
- 5. Commutativity of a related Poisson algebra
- 6. An Application to the G-saturation of the nilradical of a parabolic subalgebra

1. Notation

 $\mathfrak g$ real simple Lie algebra, Cartan involution θ .

Cartan decomposition: $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$.

 \mathfrak{g}_C , \mathfrak{k}_C and \mathfrak{p}_C .

 σ is conjugation of $\mathfrak{g}_{\mathbf{C}}$ w.r.t. $\mathfrak{g}.$

 $G_{\mathbf{C}}$ is the adjoint group of $\mathfrak{g}_{\mathbf{C}}$.

G, K, $K_{\mathbf{C}}$ conn. subgps corr. to \mathfrak{g} , \mathfrak{k} , $\mathfrak{k}_{\mathbf{C}}$.

 Ω a nilpotent G-orbit in \mathfrak{g} .

 ${\mathcal O}$ a nilpotent $K_{\mathbf C}$ -orbit in ${\mathfrak p}_{\mathbf C}$.

Kostant-Sekiguchi correspondence

Definition. (orbit "cores")

$$C(\Omega):=$$
 $\{E\in\Omega|\exists\ sl(2)\text{-triple}\ \{H,E,F\}\subset\mathfrak{g},\ \theta(E)=-F\}.$

$$C(\mathcal{O}):=$$
 $\{e\in\mathcal{O}|\exists\ normal\ sl(2)\text{-triple}\ \{x,e,f\}\subset\mathfrak{g}_{\mathbf{C}},\ \sigma(e)=f\}.$

 $C(\Omega)$ (resp., $C(\mathcal{O})$) is a single K orbit.

The correspondence:

$$\Omega \supset C(\Omega) \ni E \mapsto K_{\mathbf{C}} \cdot \frac{H - i(E + F)}{2} := \mathcal{O}_{\Omega}$$

 $(\Omega, \mathcal{O}_{\Omega})$ is said to be a KS-pair.

Properties of Kostant-Sekiguchi pairs

Let (Ω, \mathcal{O}) be a KS-pair.

- (1) $\dim_{\mathbf{R}} \Omega = \dim_{\mathbf{R}} \mathcal{O}$.
- (2) Ω and $\mathcal O$ lie in the same $G_{\mathbf C}$ orbit, $\mathcal O_{\mathbf C}$.
- (3) \mathcal{O} is a Lagrangian submanifold of $\mathcal{O}_{\mathbf{C}}$.
- (4) (Vergne) \exists K-equivariant real analytic isomorphism, $\mathcal{V}: \Omega \to \mathcal{O}$.
- (5)(Barbasch and Sepanski)

$$\Omega_1\subset\overline{\Omega_2}\iff\mathcal{O}_1\subset\overline{\mathcal{O}}_2$$

How does the correspondence affect other invariants of Ω and \mathcal{O} that are significant in representation theory?

The Big Picture

symplectic manifold Hamiltonian K-space

quasi-affine variety algebraic $K_{\mathbf{C}}$ -action

Invariants

K-rank

 $K_{\mathbf{C}}$ -rank

K-corank

 $K_{\mathbf{C}} ext{-}\mathsf{complexity}$

Notions of rank

rank of K-action on Ω , $r_K(\Omega)$:=rank K - rank $K^{E'}$ where $E' \in \Omega$ and the orbit $K \cdot E'$ is generic.

 $R[\mathcal{O}]$ denotes the ring of regular functions on \mathcal{O} . If $\lambda \in \widehat{K}$, $R[\mathcal{O}]_{\lambda}$ is the λ -isotypic component. $m_{\mathcal{O}}(\lambda)$ is the multiplicity of λ in $R[\mathcal{O}]$.

 $\Gamma(\mathcal{O}) := \{\lambda \in \widehat{K} | R[\mathcal{O}]_{\lambda} \neq (0) \}$ is a finitely generated semigroup in the set of dominant weights of $K_{\mathbf{C}}$.

The rank of the $K_{\mathbf{C}}$ action on \mathcal{O} is the rank of $\Gamma(\mathcal{O})$. It is denoted $r_{K_{\mathbf{C}}}(\mathcal{O})$.

The corank of the K action on Ω

Let w_{Ω} be the canonical symp. form on Ω and $\Phi: \Omega \to \mathfrak{k}^*$ denote the moment map.

Lemma. Let $E' \in \Omega$. Set $W = T_{E'}(K \cdot E')$ and W^{\perp} equal to the orthogonal complement (with respect to $w_{\Omega}|_{E'}$) of W inside $T_{E'}(\Omega)$. Then $T_{E'}(\Omega)$ is a sum of symplectic vector spaces:

$$\frac{W}{W \cap W^{\perp}} \bigoplus \left((W \cap W^{\perp}) \oplus (W \cap W^{\perp})^* \right) \bigoplus \frac{W^{\perp}}{W \cap W^{\perp}}.$$

where,

(1)
$$\mathfrak{k}^{\Phi(E')}/\mathfrak{k}^{E'}\simeq W\cap W^{\perp}$$
 (as $\mathfrak{k}^{E'}$ modules) and

(2)
$$\mathfrak{k}/\mathfrak{k}^{\Phi(E')} \simeq \frac{W}{W \cap W^{\perp}}$$
 (as $\mathfrak{k}^{E'}$ modules).

Proposition. (Vinberg)

 \exists open dense subset $U \subset \Omega$ such that for all $E' \in U$, the non-negative integer

$$\dim \frac{T_{E'}(K \cdot E')^{\perp}}{T_{E'}(K \cdot E') \cap T_{E'}(K \cdot E')^{\perp}},$$

has a constant value. We denote this value by $2\tilde{\epsilon}_K(\Omega)$. The integer $2\tilde{\epsilon}_K(\Omega)$ is said to be the corank of the action of K on Ω .

Remark. If $\tilde{\epsilon}_K(\Omega) = 0$, Ω is said to be multiplicity free as a Hamiltonian K-space (that is, $T_{E'}(K \cdot E')$ is coisotropic in $T_{E'}(\Omega)$ for a dense open subset of elements of Ω).

Multiplicity-free Hamiltonian K-spaces

Let X be a Hamiltonian K-space; $C^{\infty}(X)^K$ be the Poisson algebra of K-invariant smooth functions on X; and $\mathfrak{A}(X)_{ra}^K$ be the Poisson algebra of K-invariant real analytic functions on X.

Guillemin and Sternberg have shown:

 \mathbf{X} is mult. free $\iff C^{\infty}(\mathbf{X})^K$ is comm.

 $\tilde{\epsilon}_K(\Omega)$ "should" measure the failure of $C^\infty(\Omega)^K$ to be commutative. We can show that $\tilde{\epsilon}_K(\Omega)$ is a "rough" measure of the failure of $\mathfrak{A}(\Omega)^K_{ra}$ to be commutative.

Definition. Let $d = d_{\Omega}$ be the maximum dimension of a K-orbit in Ω and d_{Φ} denote the maximum dimension of a K-orbit in $\Phi(\Omega)$.

$$\begin{split} &\Omega_d = \{E' \in \Omega | \dim K \cdot E' = d\} \\ &\Omega_\Phi = \{E' \in \Omega | \dim K \cdot \Phi(E') = d_\Phi\} \\ &= \{E' \in \Omega | \dim \mathfrak{k}^{\Phi(E')} \text{ is minimum} \}. \end{split}$$

Remark. The subset U in the proposition on slide 9 can be chosen so that $U \subset \Omega_d \cap \Omega_{\Phi}$.

The complexity of the $K_{\mathbf{C}}$ action on \mathcal{O}

Definition. If $B_{\mathfrak{k}} \subset K_{\mathbf{C}}$ is a Borel subgroup, then the $c_{K_{\mathbf{C}}}(\mathcal{O})$, the complexity of the $K_{\mathbf{C}}$ action, is the codimension of a generic $B_{\mathfrak{k}}$ -orbit in \mathcal{O} . It is also the transcendence degree over \mathbf{C} of the field of $B_{\mathfrak{k}}$ -invariant rational functions on \mathcal{O} .

Proposition. (Panyushev) $c = c_{K_{\mathbb{C}}}(\mathcal{O})$ is the smallest non-negative integer such that for all $\lambda \in \Gamma(\mathcal{O})$:

 $m_{\mathcal{O}}(n\lambda)$ grows no faster than n^c as $n \to \infty$

Spherical nilpotent orbits

Definition. If $c_{K_{\mathbf{C}}}(\mathcal{O}) = 0$, \mathcal{O} is said to spherical (for $K_{\mathbf{C}}$).

(McGovern and Panyushev) Classification of spherical orbits for g simple and complex.

(King, 2003) Classification of spherical orbits for ${\mathfrak g}$ simple and real.

2. Main Theorem

Theorem. Let (Ω, \mathcal{O}) be a Kostant-Sekiguchi pair, then

(a)
$$r_{K_{\mathbf{C}}}(\mathcal{O}) = r_K(\Omega)$$
;

(b)
$$c_{K_{\mathbb{C}}}(\mathcal{O}) = \tilde{\epsilon}_{K}(\Omega)$$
.

Corollary. (King, TAMS (2002)) Ω is multiplicity free $\iff \mathcal{O}$ is spherical.

Example. When \mathfrak{g} is simple, the minimal non-zero Ω is multiplicity free, and \mathcal{O}_{Ω} is spherical.

Motivation

- 1. The previous corollary.
- 2. I. V. Mykytyuk's result:

$$\tilde{\epsilon}_G(T^*(G/K)) = c_{G_{\mathbf{C}}}(G_{\mathbf{C}}/K_{\mathbf{C}}),$$

where K and G are compact groups, $K\subset G$, and $K_{\mathbf{C}}$ and $G_{\mathbf{C}}$ are there complexifications.

Actions of Borel Subgroups on Homogeneous Spaces of Reductive Complex Lie Groups and Integrability, preprint, 2001.

Ingredients in the proof of main theorem

- 1. The Vergne real analytic isomorphism
- 2. Results of Schmid and Vilonen on the K structure of $\mathcal O$
- 3. Results of Panyushev on rank and complexity of $K_{\mathbf{C}}$ actions
- 4. Results of A. T. Huckleberry and T. Wurzbacher on K actions on symplectic manifolds

3. The K structure of \mathcal{O}

Let $E \in C(\Omega)$, $e \in C(\mathcal{O})$, $\{H, E, F\} \leftrightarrow \{x, e, f\}$. Set $\mathfrak{s} := \mathbf{R}H + \mathbf{R}E + \mathbf{R}F$.

Proposition. (Schmid-Vilonen in "Geometry of nilpotent orbits")

If $V_{\mathcal{O}}(\mathfrak{s}) = [\mathfrak{k}_{\mathbf{C}}, e]/[\mathfrak{k}, e]$, then $\exists K$ -invariant real analytic isomorphism:

$$\mathcal{O} \simeq K \times_{K^{\mathfrak{g}}} V_{\mathcal{O}}(\mathfrak{s}) \simeq T_{C(\mathcal{O})}^*(\mathcal{O}).$$

In addition, there is an isomorphism of $K^{\mathfrak{g}}$ modules over \mathbf{R} :

$$V_{\mathcal{O}}(\mathfrak{s}) \simeq \mathfrak{k}^x/\mathfrak{k}^{\mathfrak{s}} \oplus Z.$$

4. Proof of Main Theorem

The spaces $\mathfrak{t}^x/\mathfrak{t}^{\mathfrak{s}}$ and Z appear in results of Panyushev on the rank and complexity of \mathcal{O} .

Thus one can compute $n_{\mathcal{O}} = n_{\mathcal{O}, K}$, the real codimension of the largest K-orbit in \mathcal{O} , in terms of the rank and complexity, i.e., on the one hand,

$$n_{\mathcal{O}} = r_{K_{\mathbf{C}}}(\mathcal{O}) + 2c_{K_{\mathbf{C}}}(\mathcal{O}). \tag{1}$$

Proof. Combine results of Schmid-Vilonen with those of Panyushev.

Another formula for $n_{\mathcal{O}}$

Clearly, $n_{\mathcal{O}} = n_{\Omega}$. Recall the vector space dec. of $T_{E'}(\Omega)$ in terms of $W = T_{E'}(K \cdot E')$:

$$\frac{W}{W \cap W^{\perp}} \bigoplus \left((W \cap W^{\perp}) \oplus (W \cap W^{\perp})^* \right) \bigoplus \frac{W^{\perp}}{W \cap W^{\perp}}$$

where,

- (1) $\mathfrak{k}^{\Phi(E')}/\mathfrak{k}^{E'} \simeq W \cap W^{\perp}$ (as $\mathfrak{k}^{E'}$ modules) and
- (2) $\mathfrak{k}/\mathfrak{k}^{\Phi(E')} \simeq \frac{W}{W \cap W^{\perp}}$ (as $\mathfrak{k}^{E'}$ modules).

 $\dim \Omega = \dim T_{E'}(\Omega)$

$$= 2 \dim \left(\mathfrak{k}^{\Phi(E')}/\mathfrak{k}^{E'}\right) + \dim \left(\mathfrak{k}/\mathfrak{k}^{\Phi(E')}\right) + \dim \frac{W^{\perp}}{W \cap W^{\perp}}$$

$$=\dim \mathfrak{k}^{\Phi(E')}-\dim \mathfrak{k}^{E'}+\dim \mathfrak{k}-\dim \mathfrak{k}^{E'}+\dim \frac{W^{\perp}}{W\cap W^{\perp}}$$

One shows that for a dense open subset $\widetilde{U} \subset \Omega$, $E' \in \widetilde{U}$ implies:

$$\dim \mathfrak{k}^{\Phi(E')} - \dim \mathfrak{k}^{E'} = \operatorname{rank} \ \mathfrak{k}^{\Phi(E')} - \operatorname{rank} \ \mathfrak{k}^{E'} = r_K(\Omega)$$

and

$$\dim \frac{W^{\perp}}{W \cap W^{\perp}} = 2\tilde{\epsilon}_K(\Omega).$$

The preceding facts depend on work of Huckleberry and Wurzbacher.

One concludes that

$$n_{\mathcal{O}} = r_K(\Omega) + 2\tilde{\epsilon}_K(\Omega). \tag{2}$$

Once it is shown that $r_K(\Omega) = r_{K_C}(\mathcal{O})$, it follows from (1) and (2) that $\tilde{\epsilon}_K(\Omega) = c_{K_C}(\mathcal{O})$.

5. Commutativity of $\mathfrak{A}(\Omega)_{ra}^K$

Definition. Suppose M is a smooth manifold and $p \in M$. $f_1, \ldots, f_n \in C^{\infty}(M)$ are functionally independent at p if df_1, \ldots, df_n are linearly independent at p.

Let $\mathfrak{Z}=Z\left(\mathfrak{A}(\Omega)_{ra}^K\right)$ denote the center of the Poisson algebra $\mathfrak{A}(\Omega)_{ra}^K$.

Definition. Let $\alpha_K(\Omega)$ be the largest non negative integer α such that \exists dense open set $U^{\flat} \subset \Omega$ and $f_1, \ldots, f_{\alpha} \in \mathfrak{A}(\Omega)_{ra}^K$ such that:

- (1) f_1, \ldots, f_{α} are f.i. at each p in U^{\flat} and
- (2) no nontrivial linear combination of the f_i belongs to \mathfrak{Z} .

Remark. $\alpha = \alpha_K(\Omega)$ is well defined since the intersection of any two dense open sets is open and dense. Clearly $\alpha \leq \dim \Omega$.

 $\alpha_K(\Omega)$ is a measure of the size of $\mathfrak{A}(\Omega)_{ra}^K$ relative to its center. In fact, $\alpha_K(\Omega)=0 \iff \Omega$ is multiplicity free.

 $\alpha_K(\Omega)$ is related to $\tilde{\epsilon}_K(\Omega)$ because:

Proposition. Let $n=n_{\{\Omega,K\}}$ be the codimension of a K-orbit of maximal dimension in Ω . \exists open dense subset $U^{\sharp} \subset \Omega$ and f_1, \ldots, f_n in $\mathfrak{A}(\Omega)_{ra}^K$ which are f.i. on U^{\sharp} .

More on the Poisson algebra $C^{\infty}(\Omega)^K$

Definition. $f \in C^{\infty}(\Omega)$ is **collective** if $f = g \circ \Phi$ for some $g \in C^{\infty}(\mathfrak{k}^*)$. \mathfrak{B} denotes the space of collective functions.

For $f \in C^{\infty}(\Omega)$, X_f denotes the Hamiltonian vector field associated to f by w_{Ω} . That is, for all smooth vector fields Y on Ω :

$$df(Y) = w_{\Omega}(Y, X_f).$$

 $C^{\infty}(\Omega)$ is a Poisson algebra under the Poisson bracket $\{\cdot, \cdot\}$ defined as follows. For $f, g \in C^{\infty}(\Omega)$,

$$\{f, g\} = w_{\Omega}(X_f, X_g).$$

Since $C^{\infty}(\Omega)^K$ is the centralizer of \mathfrak{B} in $C^{\infty}(\Omega)$, the proposition on slide 23 implies:

Lemma. For E' in a certain dense open subset of Ω and $W = T_{E'}(K \cdot E')$:

- (a) W is spanned by: $\{X_f(E')|f\in\mathfrak{B}\}.$
- (b) W^{\perp} is spanned by: $\{X_f(E')|f\in\mathfrak{A}_{ra}^K\}$.
- (c) If $M_{E'}$ denotes a complement of $W \cap W^{\perp}$ in W^{\perp} , then $M_{E'}$ is spanned by:

$$\{X_f(E')|f\in\mathfrak{A}_{ra}^k,\ f\not\in\mathfrak{Z}\}.$$

Unfortunately, we only have:

$$\alpha_K(\Omega) \geq 2\tilde{\epsilon}_K(\Omega)$$
.

However,

Theorem. If $s = 2\tilde{\epsilon}_K(\Omega)$, \exists open dense subset U^* of Ω , s.t. for some $f_1, \ldots, f_s \in \mathfrak{A}_{ra}^K$:

- (1) $f_1, ..., f_s$ are f.i. on U^* ;
- (2) no nontrivial linear combination of the f_i belongs to \mathfrak{Z} ; and
- (3) $\forall p \in U^*$, f_1, \ldots, f_s are f.i. of \mathfrak{B} at p.

s is the largest integer for which $\exists s$ functions $f_1, \ldots, f_s \in \mathfrak{A}_{ra}^K$ and an open dense subset U satisfying (1), (2) and (3).

Finally, we obtain:

Corollary. Let (Ω, \mathcal{O}) be a KS-pair, then $2c_{K_{\mathbb{C}}}(\mathcal{O})$ is the largest integer n s.t. $\exists f_1, \ldots, f_n \in \mathfrak{A}_{ra}^K$ satisfying (1), (2) and (3) of the previous theorem (on slide 26).

Thus, in a weak sense, the integer $c_{K_{\mathbf{C}}}(\mathcal{O})$ measures the failure of the Poisson algebra of K-invariant real analytic functions on Ω to be commutative.

6. An application to the G-saturation of the nilradical of a par. sub. of \mathfrak{g}

Proposition. Let (Ω, \mathcal{O}) be a KS-pair. Suppose that $P = MAN \subset G$ (with $\mathfrak{p} = \mathfrak{m} \oplus \mathfrak{a} \oplus \mathfrak{n}$) s.t. Ω is an open subset of $G \cdot \mathfrak{n}$. Then

(a)
$$c_{K_{\mathbf{C}}}(\mathcal{O}) = c_{K_{\mathbf{C}}}(K_{\mathbf{C}}/M_{\mathbf{C}})$$
 and

(b)
$$r_{K_{\mathbf{C}}}(\mathcal{O}) = r_{K_{\mathbf{C}}}(K_{\mathbf{C}}/M_{\mathbf{C}}).$$

Remark. The integer $c_{K_{\mathbb{C}}}(K_{\mathbb{C}}/M_{\mathbb{C}})$ can be calculated by a result of Heckman.

Example. $\mathfrak{g} = sl(n, \mathbf{R})$. For each Ω there is a \mathfrak{p} such that Ω is open in $G \cdot \mathfrak{n}$. Therefore, the complexity and rank of the corresponding $K_{\mathbf{C}}$ -orbit \mathcal{O} can be computed.

Some related open questions

- 1. For general \mathcal{O} , determine $r_{K_{\mathbf{C}}}(\mathcal{O})$ and $c_{K_{\mathbf{C}}}(\mathcal{O})$.
- 2. Find a set of generators for $\Gamma(\mathcal{O})$. (For g simple and complex, these generators have been found by McGovern.) The orbit method suggests that
 - $\Gamma(\mathcal{O}) \subset \sqrt{-1}\Phi(\Omega) \cap \text{ positive Weyl chamber}$
- 3. Determine $\Gamma(\mathcal{O})$, $\Gamma(\overline{\mathcal{O}})$, and $\Gamma(\overline{\mathcal{O}}^n)$.