Notations:

 \bullet G: complex s.s. algebraic group;

• $H \subset G$: a spherical subgroup (see below);

• $B \subset G$: a Borel subgroup s.t. $BH \subset G$ dense;

• $\mathfrak{B}_H \supset \mathfrak{B}_H(1)$: set of B-orbits in G/H (resp. codim. 1-orbits);

 $T \subset B$: a maximal torus which we will fix;

• $R \supset R^+$: root system of (G,T) and +-ve system;

• $X^*(T) = \operatorname{Hom}(T, \mathbb{G}_m)$ and $X_*(T) = \operatorname{Hom}(\mathbb{G}_m, T)$;

• $\alpha^{\vee} \in X_*(T) \& \mathbb{G}_m^{\alpha}$: coroot corr. to $\alpha \in R$ and its image in T;

• U_{α} : one-parameter unipotent subgroup corr. to α ;

• $W := N_G(T)/T$: the Weyl group of G;

• $P_{\alpha} \subset G$: min'l parabolic subgroup corr. to $\alpha \in R$.

Distinguished orbits in regular varieties

KATO Syu*

September 7,2004

The goal of this talk is to generalize the symmetric spaces to much wider class notion of θ -stable maximal torus from of homogeneous spaces. Generalized θ -stable maximal torus would help us to

- 1) do harmonic analysis on the coset space;
- 2) classify some class of homogeneous spaces.

Generalization:

Symmetric spaces: Spherical G/H

$$+ \theta \in AutG \text{ s.t. } \theta^2 = id, H = G^{\theta}$$

 \Rightarrow

Regular varieties: Spherical G/H s.t.

$$H = N_G^{\sharp}(H)$$

$$N_G^{\sharp}(H) := \{g \in N_G(H); g \text{ fixes } \mathfrak{B}_H(1)\} \subset N_G(H)$$

Remark: Aut $_GG/H=N_G(H)/H$

Definition of " θ -stable" torus:

Symmetric spaces: maximal torus T s.t.

$$\theta(T) = T$$

Regular varieties: difficult since there is

 θ ON

Char'zation of regular varieries (after Luna)

The dense open G-orbit of a G-variety X s.t. Smooth projective with finite number of G-orbits;

Closed G-orbit is unique;

• $X \setminus (G/H)$ is a union of G-stable ncd.

Examples of regular varieties:

1) \(\forall adjoint algebraic symmetric spaces; \)

2)
$$(SL_{p+1}(\mathbb{C}) \times SL_p(\mathbb{C}))/SL_p(\mathbb{C});$$

3) $SL_n(\mathbb{C})/N_G(GL_p(\mathbb{C}) \times SL_{p+q-1}(\mathbb{C}))$ for

$$n = 2p + q$$
;

4) $G = Sp(4)^*(\supset Sp(2) \times Sp(2)) \supset Sp(2) \times$

O(2) = H.

Main ingredients:

• W-action on \mathfrak{B}_H (due to Knop)

Gen. max'lly split torus (due to Knop)

 Boundary behaviour of orbits (due to **Brion**)

• Gen. notion of real roots

Richardson-Springer corr.† (Kostant etc...)

T: θ -stable max'l torus s.t. $\dim T^{\theta}$: min.

$$\{\theta\text{-stable max'l torus}\}/\mathsf{Ad}(H)$$

$$\Leftrightarrow T \setminus \{g \in G; g\theta(g^{-1}) \in N_G(T)\}/H$$

$$\Leftrightarrow \mathfrak{B}_H (= \{B\text{-orbits in } G/H\})$$

$$gTg^{-1} \leftrightarrow g \mod (T \times H) \leftrightarrow Bg[H]$$

the corr. In part., W acts on \mathfrak{B}_H .

Remark on R-S corr.

The element g is taken as the "Cayley

We have $((wg)T(wg)^{-1})^{-\theta} \subset T^{-\theta}$ for $w \in$ transform." by the following:

 $W. \ \forall \theta ext{-stable torus} \ \mapsto \ \mathsf{fixed} \ \mathsf{part} \ \mathsf{of} \ \mathsf{an}$

involution in W and vice versa.

Every involution of a Coxeter group is a product of pairwise commutative reflections (Deodhar).

 $\Rightarrow g \mapsto a$ seq. of orth. real roots. prod. of simple Cayley trans.

Knop's W-action on $\mathfrak{B}_H{}^\dagger$

For $Y \in \mathfrak{B}_H$, we define $\operatorname{rk} Y = \dim Y/[B,B]$.

 $\exists W$ -action \star on \mathfrak{B}_H s.t. $\mathsf{rk} Y = \mathsf{rk} (w \star Y)$

for all $w \in W$.

 \exists analogue of max'lly split θ -stable max'l

torus T s.t.

1) $B\dot{w}[H] = w \star (B[H])$ for all

$$N_G(T) \ni \dot{w} \mapsto w \in W.$$

2) $N_H(T)/T$ is max'l & $N_H(T)[H] \subset T[H]$.

Notations (for LST)

•
$$P := \{g \in G; gB[H] = B[H]\};$$

•
$$P = LU$$
 : Levi dec. s.t. $T \subset L$;

$$\bullet W_L := N_L(T)/T$$
, $P^- \Leftrightarrow P$: opposite;

 $\bullet x_1$: unique P^- -fixed point in X.

Local Structure Theorem[†] (LST due to BLV)

sub. s.t. $\exists Z \subset X$: L-stable loc. closed

•
$$X_0 := P \times^L Z \hookrightarrow X$$
: affine open emb.;

•
$$x_1 \in Z \cong \mathbb{A}^r$$
 as $L/[L,L]$ -varieties;

$$\bullet$$
 $Gx_1 \cong G/P^-$

LST = boundary behaviour of dense open B-orbit. For $\forall Y \in \mathfrak{B}_H$, we define

$$W(Y) := \{ w \in W; \dim X - \dim Y = \ell(w), B\dot{w}^{-1}Y = X \},$$

where $\ell:W o \mathbb{Z}$ is the length func. w.r.t. B. $|W(Y)| \ge 2$ in general.

Define $X_0^w := \dot{w} X_0$, $x_w := \dot{w} x_1$, $X_-^w :=$

 $X_0^w\cap G/H$, and $\mathbb{O}_w:=Bx_w\subset G/P^-$ for

each $w \in W$.

Define $U_w := B \cap \dot{w} U \dot{w}^{-1}$ and $U^w := B^- \cap$ $\dot{w}U\dot{w}^{-1}$ for each $w\in W$. For each $Y\in$ **Define** $W_H := \{ w \in W; (w \star B[H]) = B[H] \};$ \mathfrak{B}_H , $w \in W(Y)$, and $v \in W_H$, there exists a TU_w -equivariant fibration

$$Y \cap X_0^w = U_w \times (Y \cap TU^w \dot{w} \dot{w} \dot{v}[H]) \longrightarrow w \oplus_1 \longrightarrow \oplus_w.$$

$$\mathbf{f}_{(v,w)}^{Y} := Y \cap TU^{w} \dot{w} \dot{v}[H]$$
 (fiber over x_{w}).

Projection $(Y \cap TU^w \dot{w} \dot{v} [H]) \longrightarrow T \dot{w} \dot{v} [H]$ is Galois.

Elementary modifications

Let $\alpha \in R$: simple & $Y \in \mathfrak{B}_H$ be s.t.

 $\dim P_{\alpha}Y > \dim Y$.

Pair (α, Y) is called:

Type T if $P_{\alpha}Y$ has 3 B-orbits.

Type N if $P_{\alpha}Y$ has 2 orbits &

$$(P_{lpha}Y)^{\mathbb{G}^{lpha}_m}\subset Y$$
 .

Type U if $P_{\alpha}Y \neq Y$ & not Type T or N.

We can also distinguish them via the stabilizer group of P_{α} at a point of Y.

Weak order graph

A labeled graph corr. to elm. relations among \mathfrak{B}_H .

Vertex := \mathfrak{B}_H ;

Labels := Simple roots of (G, B)

edge labeled by $\alpha \in R$ if $Y' \subset P_{\alpha}Y$. The edge is a simple (resp. double) edge if Edges := $Y, Y' \in \mathfrak{B}_H$ are connected by a (α, Y) is Type UT (resp. Type N).

Define an order \preceq on \mathfrak{B}_H gen. by $Y \preceq_{\alpha}$ are connected by an edge of the weak $Y' \Leftrightarrow 1$) dim $Y' = \dim Y + 1$ 2) Y' and Yorder graph with label α .

Reflections of \widetilde{W}_H

 T_0 : identity comp. of the stabilizer of

T at [H].

Let $s \in W_H(\subset W)$ be a reflection s.t.

 $T_0^s \neq T_0$.

(i.e. $s=s_{\alpha}$ s.t. $\alpha \in R$ & $\mathbb{G}_{m}^{\alpha} \subset T_{0}$)

"Reading" from weak order graph

 $\dot{s}_{lpha}[H] \subset U_{lpha}[H]$.

(Gen.) real roots

 $\alpha \in R$ is called

psuedo-real root (R_{ps}) if $\mathbb{G}_m^{\alpha}\subset T_0$;

real root (R_{re}) if $s_{\alpha} \in W_{H}$;

spherical real root (R_{re}^{H})

 $\mathbf{if} \ \alpha \in R_{m_0} \ \mathbf{\hat{S}} \ \dot{\mathbf{s}}_{0} \in F$

if $\alpha \in R_{re}$ & $\dot{s}_{\alpha} \in H$; perpendicular real roots (R_{re}^{\perp})

if $\alpha \in R_{re} \& \dot{s}_{\alpha} \notin H$;

quasi-real root (R_{qu}) if $\alpha \in \mathbb{Q}R_{re} \cap R$.

$$R_{ps}^* \supset R_{qu} \supset R_{re} = R_{re}^H \oplus R_{re}^\perp$$

Structural result: $\gamma, \delta \in R$ are called str. orthogonal if $\gamma \perp \delta$ & $\gamma \pm \delta \notin R$.

Lemma

 $ullet \ lpha \in R_{re}^{\perp} \ ext{is str. orth. to} \ orall eta \in R_{re} ackslash \{\pm lpha \}$

 \widetilde{W}_H preserves both R_{re}^H and R_{re}^\perp ;

 $ullet lpha \in R_{ps} ackslash R_{qu}$ is str. orth. to $orall eta \in R_{qu}$.

Main Result-I

1) For each $Y \in \mathfrak{B}_H$, $(w,v) \in W(Y) \times \widetilde{W}_H$,

 $Y \cap \overline{\mathfrak{f}_{(v,w)}^{Y}}$ contains a unique min'l dim.

 $T ext{-}\mathbf{orbit} \ \mathrm{o}_v^Y \subset Y$;

2) \mathbf{o}_v^Y is independent of the choice of

 $w \in W(Y)$;

3) The set \mathfrak{T}_H consisting of all o_v^Y is stable under the action of $N_G(T)$;

4) \exists W-equivariant surjection $\varepsilon: \varepsilon_H \to$

 \mathfrak{B}_H ,

Main Result-II

5) \exists direct factor $W_H^\perp\subset \widetilde{W}_H$ s.t. $W_H^\perp\cong$ $(\mathbb{Z}/2\mathbb{Z})^{\oplus n}$ and each $\mathfrak{t}^{-1}(Y)$ admits a transitive W_H^{\perp} -action;

For each distinguished Tg[H], gTg^{-1} is an analogue of (a H-conj. class We call elements of \mathfrak{T}_H distinguished of) θ -stable maximal torus. orbits.

Remarks

- corr. to a B-orbit is NOT unique in general (unique in symmetric case by class of " θ -stable torus" Richardson-Springer). 1) H-conj.
- 2) t is an isomorphism in symmetric case.
- 3) W_H^{\perp} is generated by reflections corr.
- to $R_{re}^{\perp}.$
- 4) $(T \cap H)$ fixes w^{-1} o for each $o \in \mathfrak{T}_H$ and
- $w \in W(\mathfrak{t}(o))$.

Explicit relation between f and o

For each $Y \in \mathfrak{B}_H$, we fix $w \in W(Y)$.

 $T_{oldsymbol{Y}}:=$ identity comp. of stab. of T on

$$\mathbf{o}_v^Y$$
 ($v\in \widetilde{W}_H$).

 $R_Y^{\omega} := \{ \alpha \in R; \alpha(wT_0w^{-1}) = 1\& \mathbb{G}_m^{\alpha} \subset T_Y \}.$

 $G_V^m\supset T$: the group corr. to R_V^m .

Proposition We have

$$\mathbf{f}_{(v,w)}^{Y}\subset G_{Y}^{w}\mathbf{o}_{v}^{Y}$$

for every $v \in W_H$. If G: simply-laced \Rightarrow $\mathbf{f}_{(v,w)}^{Y}$ is the open $T ext{-orbit}$ in $(G_Y^w\cap B)\mathbf{o}_v^Y.$

How to prove Main Theorem-I

<u>Lemma</u> Let $Y \in \mathfrak{B}_H$. Let $w \in W(Y)$. Let

 α be s.t. (α, Y) is of Type U, T, or N.

Then, it is of Type T or N

 \downarrow

 $ws_{\alpha}w^{-1}\in \widetilde{W}_{G/H}$ and $lpha(T_Y)=1$ holds.

In conjunction of this lemma, we prove

- 1) $\mathbf{o}_v^Y \subset \overline{\mathbf{f}_{(v,w)}^Y}$, 2) $\mathbf{o}_v^Y \subset G_Y^w \dot{w} \dot{v}[H]$, and
- 3) $if_{(v,w)}^{Y} = f_{(v,s_{\alpha}w)}^{s_{\alpha}\star Y}$ if (α,Y) is of Type I

How to prove four assertions-Method

Induction on the weak order.

Difficult part is \Rightarrow in Lemma and 3).

Let $Y \in \mathfrak{B}_H$ and $w \in W(Y)$ be s.t. (α, Y)

is of Type UTN. Let $Y_+ \subset P_{\alpha}Y$ be open

B-orbit. Then

$$\mathbf{f}_{(v,w)}^{Y} \subset U_{\alpha}\mathbf{f}_{(v,s_{\alpha}w)}^{Y+}$$

holds. (Here we used the assumption that G/H is regular var.)

How to prove four assertions-Observation

Use the component group of $(T \cap H)$, which determines

$$T_0 \quad \prod_{\alpha \in R_{re}^H} \mathbb{G}_m^\alpha \subset T.$$

uniquely.

$$\mathbf{f}_{(v,s_{\alpha}w)}^{Y+} \subset (G_{Y_{+}}^{s_{\alpha}w} \cap B^{-})s_{\alpha}wv[H]$$

 \Rightarrow

$$\dot{w}^{-1} \mathbf{f}_{(v,s_{lpha}w)}^{Y+}$$
 admits an action of $(T \cap H)/T_0$.

How to prove four assertions-Idea

Prove explicit relation between f and o

$$\mathbf{f}_{(v,s_{\alpha}w)}^{Y+}\subset (G_{Y_{+}}^{s_{\alpha}w}\cap B)_{\mathbf{o}v}^{Y+}$$

and compare the min'l dim'l T-orbits and its stabilizer to characterize the position of $f_{(v,w)}^{Y}$ via Observation.

 $\overline{\mathsf{Ex.}}$ If $\langle lpha, eta
angle = 1$ for some $lpha \in R^H_{re}$, then $lpha^{\vee}(-1) \subset (T \cap H)/T_0$ acts on $(U_{lpha}\backslash 1)T[H]$ freely!

How to prove Main Theorem-II

Proposition

For each $Y \in \mathfrak{B}_H$, we define $R_Y := \{ \alpha \in$

 $R;\mathbb{G}_m^{\alpha}\subset T_Y\}.$ Let $G_Y\supset T$ be the group

corr. to R_{Y} .

Then, o_v^Y is the T_Y -fixed point set of

$$G_{Y}\mathbf{o}_{v}^{Y}\cap Y=G_{Y}\mathbf{f}_{(v,w)}^{Y}\cap Y=G_{Y}\dot{w}\dot{v}[H]\cap Y.$$

Moreover,

$$X \cap \overline{G_Y \mathbf{f}_{(v,w)}^Y} = W_{G_Y} p_{wv}$$

Here $W_{G_{V}}$ is the Weyl group of holds.

 G_{Y} .

How to prove Main Theorem-III

Final Step

We prove that \mathfrak{T}_H is N(T)-invariant by

1) Choose nice $w \in W(Y)$ s.t. $\ell(s_{\alpha}w) <$

 $\ell(w)$.

2) Using induction on \leq according to

its type.

action is compatible with the construction of Knop's W-action.

By virtue of 1), our construction of N(T)-

Further application

We can "generalize" Vogan's c-invariant to general (\mathfrak{g}, H) -modules by using the of symmetric Harish-Chandra modules boundary behaviour along the boundary.