- $\mathfrak{B}_{H} \supset \mathfrak{B}_{H}(1):$ set of B-orbits in G / H (resp. codim. 1-orbits);
- $T \subset B$: a maximal torus which we will fix;
- $R \supset R^{+}: \operatorname{root}$ system of (G, T) and +-se system;
- $X^{*}(T)=\operatorname{Hom}\left(T, \mathbb{G}_{m}\right)$ and $X_{*}(T)=\operatorname{Hom}\left(\mathbb{G}_{m}, T\right) ;$
- $\alpha^{\vee} \in X_{*}(T) \& \mathbb{G}_{m}^{\alpha}:$ coroot corr. to $\alpha \in R$ and its image in T;
- $U_{\alpha}:$ one-parameter unipotent subgroup corr. to α;
- $W:=N_{G}(T) / T$: the Weyl group of G;
- $P_{\alpha} \subset G:$ min'l parabolic subgroup corr. to $\alpha \in R$.
subgroup corr.
min'l parabolic
๒
\cup

September 7,2004
*E-mail: syuchan@ms.u-tokyo.ac.jp
The goal of this talk is to generalize the
notion of θ-stable maximal torus from
symmetric spaces to much wider class
of homogeneous spaces.
Generalized θ-stable maximal torus would
help us to

1) do harmonic analysis on the coset
space;
2) classify some class of homogeneous
spaces.

Generalization:

Symmetric spaces: Spherical G / H

\forall
\Downarrow
Regular varieties: Spherical G / H s.t.
$H=N_{G}^{\sharp}(H)$
$N_{G}^{\sharp}(H):=\left\{g \in N_{G}(H) ; g\right.$ fixes $\left.\mathfrak{B}_{H}(1)\right\} \subset$
Remark: Aut $\theta_{G} G / H=N_{G}(H) / H$

$N_{G}(H)$
\Downarrow
difficult since there is
Char'zation of regular varieries (after Luna)
The dense open G-orbit of a G-variety
X s.t.

- Smooth projective with finite number nur
ncd.

G-stable
union of
,

-
Examples of regular varieties:

1) \forall adjoint algebraic symmetric spaces;
2) $\left(S L_{p+1}(\mathbb{C}) \times S L_{p}(\mathbb{C})\right) / S L_{p}(\mathbb{C})$;
3) $S L_{n}(\mathbb{C}) / N_{G}\left(G L_{p}(\mathbb{C}) \times S L_{p+q-1}(\mathbb{C})\right)$ for
$n=2 p+q ;$
4) $G=S p(4)^{*}(\supset S p(2) \times S p(2)) \supset S p(2) \times$
$O(2)=H$.
*measured by size

Main ingredients:

Knop)
 $\stackrel{+}{+}$
 (due
 - W-action on \mathfrak{B}_{H}

- Gen. max'lly split torus (due to Knop)
$\stackrel{\circ}{+}$
$\stackrel{0}{0}$
orbits
of
ehaviour
Boundary b
-
- Gen. notion of real roots
Richardson-Springer corr. ${ }^{\dagger}$ (Kostant etc...)
$T: \theta$-stable max'l torus s.t. $\operatorname{dim} T^{\theta}:$ min.
le max'l torus $\} / \operatorname{Ad}(H)$
$\Leftrightarrow T \backslash\left\{g \in G ; g \theta\left(g^{-1}\right) \in N_{G}\right.$
$\Leftrightarrow T \backslash\left\{g \in G ; g \theta\left(g^{-1}\right) \in N_{G}(T)\right\} / H$
$\Leftrightarrow \mathfrak{B}_{H}(=\{B$-orbits in $G / H\})$
Remark on R-S corr.
The element g is taken as the "Cayley
transform." by the following:
We have $\left((w g) T(w g)^{-1}\right)^{-\theta} \subset T^{-\theta}$ for $w \in$
$W . \forall \theta$-stable torus \mapsto fixed part of an
involution in W and vice versa.
Every involution of a Coxeter group is
a product of pairwise commutative re-
flections (Deodhar).
$\Rightarrow g \mapsto$ a seq. of orth. real roots. \mapsto
prod. of simple Cayley trans.

Knop's W-action on $\mathfrak{B}_{H}{ }^{\dagger}$

For $Y \in \mathfrak{B}_{H}$, we define $\operatorname{rk} Y=\operatorname{dim} Y /[B, B]$.
$\exists W$-action \star on \mathfrak{B}_{H} s.t. $\quad \operatorname{rk} Y=\operatorname{rk}(w \star Y)$
for all $w \in W$.

- $W_{L}:=N_{L}(T) / T, P^{-} \Leftrightarrow P$: opposite;
- x_{1} : unique P^{-}-fixed point in X.

Notations (for LST)
Local Structure Theorem ${ }^{\dagger}$ (LST due to BLV)
$\exists Z \subset X: L$-stable loc. closed sub. s.t.
- $X_{0}:=P \times^{L} Z \hookrightarrow X:$ affine open emb.;
$\underset{i}{i}$
LST $=$ boundary behaviour of dense
open B-orbit. For $\forall Y \in \mathfrak{B}_{H}$, we define
$W(Y):=\left\{w \in W\right.$; $\operatorname{dim} X$ - $\operatorname{dim} Y=\ell(w), \overline{B \dot{w}^{-1} Y}$
where $\ell: W \rightarrow \mathbb{Z}$ is the length func.
w.r.t. $B .|W(Y)| \geq 2$ in general.
Define $X_{0}^{w}:=\dot{w} X_{0}, x_{w}:=\dot{w} x_{1}, X_{-}^{w}:=$
$X_{0}^{w} \cap G / H$, and $\mathbb{O}_{w}:=B x_{w} \subset G / P^{-}$for
each $w \in W$.

$\theta^{\dot{3}}$
\because
Elementary modifications

Pair (α, Y) is called:
Type \mathbf{T} if $P_{\alpha} Y$ has 3
Type \mathbf{N} if $P_{\alpha} Y$ has 2
之
B-orbits.
orbits \&
$\left(P_{\alpha} Y\right)^{\mathbb{G}_{m}^{\alpha}} \subset$
$\mathbb{G}_{m}^{\alpha} \subset Y$.
Type T or
them via
point of
Type U if $P_{\alpha} Y \neq Y \&$ not
We can also distinguish
stabilizer group of P_{α} at a $\stackrel{\square}{-}$
relations
by a
The
edge if

U
\bar{O}
0

(G,
of
roots
e
\mathfrak{B}^{2}
α

$\stackrel{\dot{0}}{0}$

$\stackrel{0}{0}$
α.

by
resp.

Edges $:=Y, Y$
edge labeled
simple (
σ
edge is
-
$\stackrel{\rightharpoonup}{\sigma}$)
1)
by
an
$\overline{0}$
O
ㅁ
$\frac{c}{4}$
3
$\frac{c}{3}$
$\frac{0}{0}$
$\frac{0}{6}$
connected
1
order

$$
\begin{aligned}
& \text { Reflections of } \widetilde{W}_{H} \\
& T_{0}: \text { identity comp. } \\
& T \text { at }[H] \text {. } \\
& \text { Let } s \in \widetilde{W}_{H}(\subset W) \\
& T_{0}^{s} \neq T_{0} . \\
& \text { (i.e. } s=s_{\alpha} \text { s.t. } \alpha \in
\end{aligned}
$$

of the stabilizer of
be a reflection s.t.

$$
\begin{gathered}
\text { ph } \\
\\
\\
\\
\hline 17
\end{gathered}
$$

(Gen.) real roots
on

if

quasi-real root ($R_{q u}$) if $\alpha \in \mathbb{Q} R_{r e} \cap R$.
$\in H ;$
$\left(R_{r e}^{\perp}\right)$
alar real roots
if $\alpha \in R_{r e} \& \dot{s}_{\alpha}$
real root
spherical real root $\left(R_{r e}^{H}\right)$

$\& \dot{s}^{2}$
roots
$\& \dot{s}^{2}$
$\left.{ }_{H}^{\partial u} Y\right) \nmid$
$M \ni{ }^{p_{S}}$
$\left({ }^{s d} \mathcal{U}\right)$

1
$R_{p s}{ }^{*} \supset R_{q u} \supset$

- $\alpha \in R_{r e}^{\perp}$ is str. orth. to $\forall \beta \in R_{r e} \backslash\{ \pm \alpha\} ;$
- \widetilde{W}_{H} preserves both $R_{r e}^{H}$ and $R_{r e}^{\perp}$;
- $\alpha \in R_{p s} \backslash R_{q u}$ is str. orth. to $\forall \beta \in R_{q u}$.

We call elements of \mathfrak{T}_{H} distinguished
orbits. For each distinguished $T g[H]$,
$g T g^{-1}$ is an analogue of (a H-conj. class
of) θ-stable maximal torus.
Remarks

2) t is an isomorphism in symmetric case.
3) W_{H}^{\perp} is generated by reflections corr.
to $R_{r e}^{\perp}$.
4) $(T \cap H)$ fixes w^{-1} o for each $o \in \mathfrak{T}_{H}$ and
$w \in W(\mathfrak{t}(\mathbf{o}))$.
Explicit relation between f and o
For each $Y \in \mathfrak{B}_{H}$, we fix $w \in W(Y)$.
$T_{Y}:=$ identity comp. of stab. of T on
$\mathbf{o}_{v}^{Y}\left(v \in \widetilde{W}_{H}\right)$.
$R_{Y}^{w}:=\left\{\alpha \in R ; \alpha\left(w T_{0} w^{-1}\right)=1 \& \mathbb{G}_{m}^{\alpha} \subset T_{Y}\right\}$.
$G_{Y}^{w} \supset T:$ the group corr. to R_{Y}^{w}.
Proposition We have

$$
\mathbf{f}_{(v, w)}^{Y} \subset G_{Y}^{w} \mathbf{o}_{v}^{Y}
$$

for every $v \in \widetilde{W}_{H}$. If $G: \operatorname{simply-laced~} \Rightarrow$
$\mathbf{f}_{(v, w)}^{Y}$ is the open T-orbit in $\left(G_{Y}^{w} \cap B\right) \mathbf{o}_{v}^{Y}$.
How to prove Main Theorem-I
Lemma Let $Y \in \mathfrak{B}_{H}$. Let $w \in W(Y)$. Let
α be s.t. (α, Y) is of Type \mathbf{U}, \mathbf{T}, or \mathbf{N}.
Then, it is of Type \mathbf{T} or \mathbf{N}
\Leftrightarrow
$w s_{\alpha} w^{-1} \in \widetilde{W}_{G / H}$ and $\alpha\left(T_{Y}\right)=1$ holds.
In conjunction of this lemma, we prove

1) $\mathbf{o}_{v}^{Y} \subset \overline{\mathbf{f}_{(v, w)}^{Y}}$, 2) $\mathbf{o}_{v}^{Y} \subset G_{Y}^{w} \dot{w} \dot{v}[H]$, and
2) $\dot{s} \mathbf{f}_{(v, w)}^{Y}=\mathbf{f}_{\left(v, s_{\alpha} w\right)}^{s_{\alpha \star \prime}}$ if (α, Y) is of Type \mathbf{U}.

$$
\mathbf{f}_{(v, w)}^{Y} \subset U_{\alpha} \mathbf{f}_{\left(v, s_{\alpha} w\right)}^{Y+}
$$

holds. (Here we used the assumption
that G / H is regular var.)
How to prove four assertions-Observation
Use the component group of $(T \cap H)$,
which determines

$\left.\cap B^{-}\right) s_{\alpha} \dot{w} v[H]$
$/ T_{0}$.
${ }_{26}$
How to prove four assertions-Idea
Prove explicit relation between fa

and compare the min'l dim'l T-orbits
and its stabilizer to characterize the po-
via Observation.

0
0
0
0
for
N
act

§ 1

(T
sition of
Ex. If $\langle\alpha$,
$\alpha^{\vee}(-1) \subset$
freely!

How to prove Main Theorem-III
Final Step
We prove that \mathfrak{T}_{H} is $N(T)$-invariant by

1) Choose nice $w \in W(Y)$ s.t. $\ell\left(s_{\alpha} w\right)<$
$\ell(w)$.
2) Using induction on \preceq according to
its type.
By virtue of 1), our construction of $N(T)$ -
action is compatible with the construc-
lion of Knop's W-action.
Further application
We can "generalize" Vogan's c-invariant
of symmetric Harish-Chandra modules
to general ($\mathfrak{g}, H)$-modules by using the
boundary behaviour along the bound-
