Representations of reductive groups and invariant theory

Kyo Nishiyama

Graduate School of Science
Kyoto University

International conference on Recent Advances in Mathematics and its applications.
(September 24–30, 2007)

Department of Mathematics, KU Post Graduate Center
Belgaum, Karnataka INDIA
1 Introduction

2 First Fundamental Theorem (FFT)

3 Second Fundamental Theorem (SFT)

4 Geometric invariant theory (a first step)
What is invariants?
What is invariants?

Examples of invariants in broader sense

- numbers ... of finite sets
What is invariants?

Examples of invariants in broader sense

- **numbers** ... of finite sets
- **dim** ... of finite vector spaces
What is invariants?

Examples of invariants in broader sense

- **numbers** . . . of finite sets
- **dim** . . . of finite vector spaces
- **rank** . . . of matrix (or linear map)
What is invariants?

Examples of invariants in broader sense

- **numbers** ... of finite sets
- **dim** ... of finite vector spaces
- **rank** ... of matrix (or linear map)
- **genus** ... of compact 2-dimensional surfaces
 or we should say...
 Euler characteristic ... of manifolds
What is invariants?

Examples of invariants in **broader** sense

- **numbers** ... of finite sets
- **dim** ... of finite vector spaces
- **rank** ... of matrix (or linear map)
- **genus** ... of compact 2-dimensional surfaces
 or we should say...
 Euler characteristic ... of manifolds

Classification problem

⇒ study of equivalence classes
⇒ invariants
There are more sophisticated invariants...
There are more sophisticated invariants... which I **vaguely** understand
There are more sophisticated invariants... which I **vaguely** understand

- Alexander/Jones/Homfly/Kauffman polynomials ... of knots and links
- Vasiliev invariants
- Chern-Simons invariants
- Now there are so many invariants, quantum invariants, ...

- Donaldson invariants
- Seiberg-Witten invariants
- Gromov-Witten invariants ... quantum cohomology

- Iwasawa invariants ... for class field theory
There are more sophisticated invariants... which I **vaguely** understand

- Alexander/Jones/Homfly/Kauffman polynomials ... of knots and links
- Vasiliev invariants
- Chern-Simons invariants
- Now there are so many invariants, quantum invariants, ...

- Donaldson invariants
 - Seiberg-Witten invariants
 - Gromov-Witten invariants ... quantum cohomology

- Iwasawa invariants ... for class field theory

Study of invariants ≡ Study of mathematics!
There are more sophisticated invariants... which I **vaguely** understand

- Alexander/Jones/Homfly/Kauffman polynomials ... of knots and links
- Vasiliev invariants
- Chern-Simons invariants
- Now there are so many invariants, quantum invariants, ...

- Donaldson invariants
 - Seiberg-Witten invariants
 - Gromov-Witten invariants ... quantum cohomology

- Iwasawa invariants ... for class field theory

Study of invariants \equiv Study of mathematics!

... Too big subject for us
There are more sophisticated invariants... which I \textit{vaguely} understand

- Alexander/Jones/Homfly/Kauffman polynomials ... of knots and links
- Vasiliev invariants
- Chern-Simons invariants
- Now there are so many invariants, quantum invariants, ...
- Donaldson invariants
 - Seiberg-Witten invariants
 - Gromov-Witten invariants ... quantum cohomology
- Iwasawa invariants ... for class field theory

Study of invariants \equiv Study of mathematics!

... Too big subject for us (at least for me)
So what is invariant theory?
So what is invariant theory?

Examples of classical invariants in invariant theory

1. square of distance $r^2 = x_1^2 + \cdots + x_n^2$: orthogonal invariant
So what is invariant theory?

Examples of classical invariants in invariant theory

1. Square of distance \(r^2 = x_1^2 + \cdots + x_n^2 \): orthogonal invariant

 Or more generally, quadratic form of signature \((p, q)\) \((p + q = n)\)
 \[x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_{p+q}^2 \]
 \[\implies \text{Sylvester’s law of inertia} \]
So what is invariant theory?

Examples of classical invariants in invariant theory

1. square of distance \(r^2 = x_1^2 + \cdots + x_n^2 \): orthogonal invariant

 Or more generally,
 quadratic form of signature \((p, q)\) \((p + q = n)\)
 \[x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_{p+q}^2 \]

 \[\implies \text{ Sylvester's law of inertia} \]

2. determinant: \(\det X \)
 \[\det(gXg^{-1}) = \det X \quad g: \text{invertible matrix} \]
 \[\det(gX) = \det X \quad g: \text{unimodular matrix} \]
So what is invariant theory?

Examples of classical invariants in invariant theory

1. square of distance \(r^2 = x_1^2 + \cdots + x_n^2 \) : orthogonal invariant

 Or more generally,
 quadratic form of signature \((p, q)\) \((p + q = n)\)
 \(x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_{p+q}^2\)

 \(\implies\) Sylvester’s law of inertia

2. determinant : \(\det X\)

 \[\det(gXg^{-1}) = \det X\quad g: \text{invertible matrix}\]

 \[\det(gX) = \det X\quad g: \text{unimodular matrix}\]

 trace : \(\text{trace } X\)

 \[\text{trace}(gXg^{-1}) = \text{trace } X\quad g: \text{invertible matrix}\]
The discriminant: $\Delta(f)$ is a SL_2-invariant.

$$f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$$

$$= a_0 \prod_{j=1}^{n} (x - \zeta_j)$$

$$\Delta(f) := a_0^{2n-2} \prod_{i<j}(\zeta_i - \zeta_j)^2 \quad \text{... polynomial in } a = (a_0, a_1, \ldots, a_n)$$
discriminant : \(\Delta(f) \) \(\cdots \) SL\(_2\)-invariant

\[
f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1}x + a_n
\]

\[
= a_0 \prod_{j=1}^{n} (x - \zeta_j)
\]

\[
\Delta(f) := a_0^{2n-2} \prod_{i<j} (\zeta_i - \zeta_j)^2 \quad \cdots \text{polynomial in } a = (a_0, a_1, \ldots, a_n)
\]

resultant : \(R(f, g) \) \(\cdots \) SL\(_2\)-invariant

\[
f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1}x + a_n = a_0 \prod_{i=1}^{n} (x - \zeta_i)
\]

\[
g(x) = b_0 x^m + b_1 x^{m-1} + \cdots + b_{m-1}x + b_m = b_0 \prod_{j=1}^{m} (x - \xi_j)
\]

\[
R(f, g) := a_0^m b_0^n \prod_{i,j} (\zeta_i - \zeta_j) \quad \cdots \text{polynomial in } a \& b
\]
These are all \textit{polynomial invariants} and
These are all polynomial invariants and related to some group action
These are all polynomial invariants and related to some group action

Here is a summary:

<table>
<thead>
<tr>
<th>distance</th>
<th>$O_n \hookrightarrow \mathbb{R}^n :$ orthogonal group</th>
</tr>
</thead>
<tbody>
<tr>
<td>quadratic form</td>
<td>$O_{p,q} \hookrightarrow \mathbb{R}^n :$ indefinite orth group</td>
</tr>
<tr>
<td>det X, trace X</td>
<td>$GL_n \hookrightarrow M_n :$ adjoint action</td>
</tr>
<tr>
<td>$\Delta(f), R(f, g)$</td>
<td>$SL_2 \hookrightarrow \mathbb{C}[x, y]_n$</td>
</tr>
</tbody>
</table>

Here $GL_n = \{g : n \times n$-matrix $| \exists g^{-1} \iff \det g \neq 0\}$

$O_{p,q} = \{g \in GL_n \mid \|g x\|_{p,q} = \|x\|_{p,q}\}$ \hspace{0.5cm} (n = p + q)

where $\|x\|_{p,q} = x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_{p+q}^2$

$SL_n = \{g \in GL_n \mid \det g = 1\}$ \hspace{0.5cm} example of reductive groups
Abstract setting

$G : \text{(linear) group } \curvearrowright X \subset \mathbb{C}^N : \text{algebraic action of } G \text{ on } X$
Abstract setting

\[G : \text{linear group} \bowtie X \subset \mathbb{C}^N : \text{algebraic action of } G \text{ on } X \]

Definition (algebraic action)

\[\rho : G \times X \rightarrow X : \text{polynomial function s.t.} \]

1. \(\rho(e, x) = x \)
2. \(\rho(gh, x) = \rho(g, \rho(h, x)) \)

Notation: \(g \cdot x = gx = \rho(g, x) \)
Abstract setting

$G : \text{(linear) group} \curvearrowright X \subset \mathbb{C}^N : \text{algebraic action of } G \text{ on } X$

 Definition (algebraic action)

$\rho : G \times X \to X : \text{polynomial function s.t.}$

1. $\rho(e, x) = x$
2. $\rho(gh, x) = \rho(g, \rho(h, x))$

Notation: $g \cdot x = gx = \rho(g, x)$

Polynomial functions and invariants:

$\mathbb{C}[X] := \{f : X \to \mathbb{C} \mid f \text{ is polynomial function} \} : \text{ring of regular functions}$

$\mathbb{C}[X]^G := \{f \in \mathbb{C}[X] \mid f(g^{-1} \cdot x) = f(x) \ (\forall g \in G)\} : \text{ring of invariants}$
Abstract setting

$G : (\text{linear}) \text{ group } \sim X \subset \mathbb{C}^N : \text{algebraic action of } G \text{ on } X$

Definition (algebraic action)

$\rho : G \times X \rightarrow X : \text{polynomial function s.t.}$

1. $\rho(e, x) = x$

2. $\rho(gh, x) = \rho(g, \rho(h, x))$

Notation: $g \cdot x = gx = \rho(g, x)$

Polynomial functions and invariants:

$\mathbb{C}[X] := \{f : X \rightarrow \mathbb{C} \mid f \text{ is polynomial function}\} : \text{ring of regular functions}$

$\mathbb{C}[X]^G := \{f \in \mathbb{C}[X] \mid f(g^{-1} \cdot x) = f(x) \ (\forall g \in G)\} : \text{ring of invariants}$

functions which are constant along orbits
Abstract setting

$G : \text{(linear) group} \curvearrowright X \subset \mathbb{C}^N : \text{algebraic action of } G \text{ on } X$

Definition (algebraic action)

$\rho : G \times X \rightarrow X : \text{polynomial function s.t.
\begin{align*}
1. \quad & \rho(e, x) = x \\
2. \quad & \rho(gh, x) = \rho(g, \rho(h, x))
\end{align*}$

Notation: $g \cdot x = gx = \rho(g, x)$

Polynomial functions and invariants:

$\mathbb{C}[X] := \{f : X \rightarrow \mathbb{C} \mid f \text{ is polynomial function}\} : \text{ring of regular functions}$

$\mathbb{C}[X]^G := \{f \in \mathbb{C}[X] \mid f(g^{-1} \cdot x) = f(x) \ (\forall g \in G)\} : \text{ring of invariants}$ functions which are constant along orbits

$\implies \mathbb{C}[X]^G \text{ is graded by degree of polynomials, i.e., graded algebra}$
Why invariants?
Why invariants?

As we saw, invariants are *ubiquitous* in mathematics
Why invariants?

As we saw, invariants are ubiquitos in mathematics. In particular...

- **Classifying** mathematical objects
Why invariants?

As we saw, invariants are **ubiquitous** in mathematics
In particular...

- **Classifying** mathematical objects
- **Understanding** the original action $G \curvearrowright X$
Why invariants?

As we saw, invariants are **ubiquitous** in mathematics. In particular...

- **Classifying** mathematical objects
- **Understanding** the original action $G \lhd X$
 - orbits,
Why invariants?

As we saw, invariants are **ubiquitous** in mathematics. In particular...

- **Classifying** mathematical objects
- Understanding the original action $G \curvearrowright X$
 - orbits,
 - homogeneous spaces, or prehomogeneous spaces
Why invariants?

As we saw, invariants are *ubiquitous* in mathematics. In particular...

- **Classifying** mathematical objects
- **Understanding** the original action $G \curvearrowright X$
 - orbits,
 - homogeneous spaces, or prehomogeneous spaces
 - symmetric spaces, symmetric domains, etc.
Why invariants?

As we saw, invariants are **ubiquitous** in mathematics.
In particular...

- **Classifying** mathematical objects
- **Understanding** the original action $G \curvearrowright X$
 - orbits,
 - homogeneous spaces, or prehomogeneous spaces
 - symmetric spaces, symmetric domains, etc.
- **Harmonic analysis** relative to the action $G \curvearrowright X$
Why invariants?

As we saw, invariants are *ubiquitous* in mathematics. In particular...

- **Classifying** mathematical objects
- **Understanding** the original action $G \curvearrowright X$
 - orbits,
 - homogeneous spaces, or prehomogeneous spaces
 - symmetric spaces, symmetric domains, etc.
- **Harmonic analysis** relative to the action $G \curvearrowright X$
 - *invariant integral*, or Haar measure
Why invariants?

As we saw, invariants are ubiquitous in mathematics. In particular...

- **Classifying** mathematical objects
- **Understanding** the original action \(G \curvearrowright X \)
 - orbits,
 - homogeneous spaces, or prehomogeneous spaces
 - symmetric spaces, symmetric domains, etc.
- **Harmonic analysis** relative to the action \(G \curvearrowright X \)
 - invariant integral, or Haar measure
 - invariant differential operators (Laplacian) and spherical functions
Why invariants?

As we saw, invariants are **ubiquitous** in mathematics. In particular...

- **Classifying** mathematical objects
- **Understanding** the original action \(G \ltimes X \)
 - orbits,
 - homogeneous spaces, or prehomogeneous spaces
 - symmetric spaces, symmetric domains, etc.
- **Harmonic analysis** relative to the action \(G \ltimes X \)
 - invariant integral, or Haar measure
 - invariant differential operators (Laplacian) and spherical functions
 - **Fourier transform**, etc.
Fundamental problems of invariant theory

Two classical problems ...
Fundamental problems of invariant theory

Two classical problems ...

1. Find the ring generators $\{\Delta_i\}_{i \in I} \subset \mathbb{C}[X]^G$

 Question: \exists finite number of generators?
 Can choose a good basis?

 FFT = First Fundamental Theorem
Fundamental problems of invariant theory

Two classical problems ...

1. Find the ring generators $\{\Delta_i\}_{i \in I} \subset \mathbb{C}[X]^G$

 Question: Does there exist a finite number of generators?
 Can we choose a good basis?

 $\text{FFT} = \text{First Fundamental Theorem}$

2. Find all the relations among $\{\Delta_i\}_{i \in I}$

 Question: What is the transcending degree?
 What are the singularities?

 $\text{SFT} = \text{Second Fundamental Theorem}$
Fundamental problems of invariant theory

Two classical problems ...

1. Find the ring generators \(\{\Delta_i\}_{i \in I} \subset \mathbb{C}[X]^G \)

 Question: \(\exists \) finite number of generators?

 Can choose a good basis?

 \(\text{FFT} = \) First Fundamental Theorem

2. Find all the relations among \(\{\Delta_i\}_{i \in I} \)

 Question: transcending degree?

 singularities?

 \(\text{SFT} = \) Second Fundamental Theorem

There are many kinds of answers \(\cdots \)
Fundamental problems of invariant theory

Two classical problems...

1. Find the ring generators $\{\Delta_i\}_{i \in I} \subset \mathbb{C}[X]^G$
 Question: \exists finite number of generators?
 Can choose a good basis?

 \textbf{FFT} = First Fundamental Theorem

2. Find all the relations among $\{\Delta_i\}_{i \in I}$
 Question: transcending degree?
 singularities?

 \textbf{SFT} = Second Fundamental Theorem

There are many kinds of answers ⋮

Final Goal

Better understanding of $\mathbb{C}[X]^G$ in \textit{geometric terms}.
Understanding of the original action $G \curvearrowright X$ through it.
Basic setting

G: reductive, linear algebraic group
Basic setting

\(G : \text{ reductive, linear algebraic group} \)

Definition (algebraic group)

algebraic group = Zariski closed subgroup in \(\text{GL}_N(\mathbb{C}) \)

Zariski closed = solutions of the system of polynomial equations
Basic setting

G : reductive, linear algebraic group

Definition (algebraic group)

algebraic group = Zariski closed subgroup in $\text{GL}_N(\mathbb{C})$

Zariski closed = solutions of the system of polynomial equations

Definition (reductive)

reductive group = nilpotent radical is trivial

(if /k, k being algebraically closed, $\text{char } k = 0$)

= \forall finite dim representation is completely reducible

= \forall finite dim repr is decomposed into the direct sum of irreducibles

V : reducible $\iff V = U_1 \oplus U_2$ ($\exists U_i$: subrepresentation)

irreducibles = basis unit (atom) of representation
Reductive groups

Example (reductive groups)

\[\mathbb{T} = (\mathbb{C}^\times)^m : \text{torus} \]

\[\text{GL}_n, \text{SL}_n, \text{O}_n, \text{SO}_n = \text{O}_n \cap \text{SL}_n, \text{Sp}_{2n} : \text{classical groups} \]

\[G_2, F_4, E_6, E_7, E_8 : \text{exceptional groups} \]
Reductive groups

Example (reductive groups)

\[\mathbb{T} = (\mathbb{C}^\times)^m : \text{torus} \]
\[\text{GL}_n, \text{SL}_n, O_n, \text{SO}_n = O_n \cap \text{SL}_n, \text{Sp}_{2n} : \text{classical groups} \]
\[G_2, F_4, E_6, E_7, E_8 : \text{exceptional groups} \]

Also we have a general machinery to produce reductive groups
Reductive groups

Example (reductive groups)

\[\mathbb{T} = (\mathbb{C}^\times)^m : \text{torus} \]
\[\text{GL}_n, \text{SL}_n, O_n, \text{SO}_n = O_n \cap \text{SL}_n, \text{Sp}_{2n} : \text{classical groups} \]
\[G_2, F_4, E_6, E_7, E_8 : \text{exceptional groups} \]

Also we have a general machinery to produce reductive groups

Theorem

1. Product of reductive groups is reductive
Reductive groups

Example (reductive groups)

$$\mathbb{T} = (\mathbb{C}^\times)^m : \text{torus}$$

$$\text{GL}_n, \text{SL}_n, O_n, SO_n = O_n \cap \text{SL}_n, \text{Sp}_{2n} : \text{classical groups}$$

$$G_2, F_4, E_6, E_7, E_8 : \text{exceptional groups}$$

Also we have a general machinery to produce reductive groups

Theorem

1. Product of reductive groups is reductive

2. $$G : \text{reductive}, \ H \subset G : \text{normal} \implies G/H \text{ reductive (quotient)}$$
Reductive groups

Example (reductive groups)

\[\mathbb{T} = (\mathbb{C}^\times)^m : \text{torus} \]

\[\text{GL}_n, \text{SL}_n, \text{O}_n, \text{SO}_n = \text{O}_n \cap \text{SL}_n, \text{Sp}_{2n} : \text{classical groups} \]

\[G_2, F_4, E_6, E_7, E_8 : \text{exceptional groups} \]

Also we have a general machinery to produce reductive groups

Theorem

1. *Product of reductive groups is reductive*
2. \(G : \text{reductive}, H \subset G : \text{normal} \implies G/H \text{ reductive (quotient)} \)
3. \(G^\circ : \text{reductive} \implies G : \text{reductive} \quad (G^\circ : \text{identity component}) \)

*Extension by finite group (\(\#G/G^\circ < \infty \))
Finite generation of invariants

Here is one of the best answer to FFT

Theorem (D. Hilbert 1990, 1993)

\[G : \text{reductive} \quad \sim \quad V = \mathbb{C}^n : \text{vector space (linear repr)} \]

\[\implies \quad \mathbb{C}[V]^G : \text{finitely generated algebra} / \mathbb{C} \]
Finite generation of invariants

Here is one of the best answer to FFT

Theorem (D. Hilbert 1990, 1993)

\[G : \text{reductive} \quad \bowtie \quad V = \mathbb{C}^n : \text{vector space (linear repr)} \]
\[\implies \mathbb{C}[V]^G : \text{finitely generated algebra over } \mathbb{C} \]

Remark

\exists \text{ counter example for non-reductive } G

\[\ldots \text{ Nagata (1959) : Hilbert’s 14th problem} \]
Recent work by Mukai (2005) \ldots Rich examples of finite generation even when \(G \) is not reductive
Example of actions of finite groups

\[\#G < \infty \implies G : \text{reductive} \]

\[\mathbb{C}[V]^G = \{ R(f) \mid R(f)(x) = \frac{1}{\#G} \sum_{g \in G} f(g^{-1}x) \} \]

\(R(f) \) : Reynolds operator (projection to invariants)
Example of actions of finite groups

\[\#G < \infty \implies G : \text{reductive} \]

\[\mathbb{C}[V]^G = \{ R(f) \mid R(f)(x) = \frac{1}{\#G} \sum_{g \in G} f(g^{-1}x) \} \]

\(R(f) : \text{Reynolds operator} \) (projection to invariants)

Theorem (E. Noether 1916)

\(\mathbb{C}[V]^G : \text{generated by polynomials of degree} \leq \#G \)
Example of actions of finite groups

\[\# G < \infty \implies G : \text{reductive} \]

\[\mathbb{C}[V]^G = \{ R(f) \mid R(f)(x) = \frac{1}{\# G} \sum_{g \in G} f(g^{-1}x) \} \]

\(R(f) : \text{Reynolds operator} \) (projection to invariants)

Theorem (E. Noether 1916)

\[\mathbb{C}[V]^G : \text{generated by polynomials of degree} \leq \# G \]

Molien series:

\[\sum_{k=0}^{\infty} \dim(\mathbb{C}[V]^G_k) t^k = \frac{1}{\# G} \sum_{g \in G} \frac{1}{\det(1 - t \rho(g))} \]
Example of actions of finite groups

\[\# G < \infty \implies G : \text{reductive} \]

\[\mathbb{C}[V]^G = \{ R(f) \mid R(f)(x) = \frac{1}{\# G} \sum_{g \in G} f(g^{-1}x) \} \]

\(R(f) : \text{Reynolds operator (projection to invariants) } \)

Theorem (E. Noether 1916)

\[\mathbb{C}[V]^G : \text{generated by polynomials of degree } \leq \# G \]

\[\text{Molien series : } \sum_{k=0}^{\infty} \dim(\mathbb{C}[V]_k^G) t^k = \frac{1}{\# G} \sum_{g \in G} \frac{1}{\det(1 - t\rho(g))} \]

Theorem

\(G : \text{a finite reflection group} \)

\(\{ \Delta_1, \ldots, \Delta_l \} \subset \mathbb{C}[V]^G : \text{minimal homogeneous generators} \)

\[\implies \{ d_k = \deg \Delta_k \mid 1 \leq k \leq l \} : \text{uniquely determined (exponents) } \]
Rational invariants and Galois theory

Theorem

\[G : \text{finite group} \implies \mathbb{C}(V)^G = Q(\mathbb{C}[V]^G) : \text{quotient field} \quad \& \]
\[[\mathbb{C}(V) : \mathbb{C}(V)^G] = \#G \]
Rational invariants and Galois theory

Theorem

\[G : \text{finite group} \implies \mathbb{C}(V)^G = Q(\mathbb{C}[V]^G) : \text{quotient field} \quad \&\quad [\mathbb{C}(V) : \mathbb{C}(V)^G] = \#G \]

\[\mathbb{C}(V) : \text{Galois extension} \text{ of } \mathbb{C}(V)^G \text{ with Galois group } G \]

i.e.,

Study of \(\mathbb{C}[V]^G \leftrightarrow \text{Galois theory for rings} \)
Example: symmetric group action

\[G = \mathfrak{S}_n \curvearrowright V = \mathbb{C}^n : \text{action by coordinate change} \]
\[\mathbb{C}[V]^G = \{\text{symmetric polynomials}\} : \text{invariants} \]
Example: symmetric group action

\[G = \mathfrak{S}_n \curvearrowright V = \mathbb{C}^n : \text{action by coordinate change} \]

\[\mathbb{C}[V]^G = \{ \text{symmetric polynomials} \} : \text{invariants} \]

Generators of the ring of invariants \(\mathbb{C}[V]^G \):

- \{elementary symm fun \(e_k(1 \leq k \leq n) \}\}

\[
\prod_{i=1}^{n} (1 + tx_i) = \sum_{k=0}^{n} e_k(x) t^k
\]
Example: symmetric group action

\[G = \mathfrak{S}_n \xrightarrow{\sim} V = \mathbb{C}^n : \text{action by coordinate change} \]

\[\mathbb{C}[V]^G = \{ \text{symmetric polynomials} \} : \text{invariants} \]

Generators of the ring of invariants \(\mathbb{C}[V]^G \):

- \{ \text{elementary symm fun } e_k(1 \leq k \leq n) \} \quad \prod_{i=1}^{n} (1 + tx_i) = \sum_{k=0}^{n} e_k(x) t^k

- \{ \text{power sum } p_k(1 \leq k \leq n) \} \quad p_k(x) = \sum_{i=1}^{n} x_i^k
Example: symmetric group action

\[G = \mathfrak{S}_n \curvearrowright V = \mathbb{C}^n : \text{action by coordinate change} \]

\[\mathbb{C}[V]^G = \{ \text{symmetric polynomials} \} : \text{invariants} \]

Generators of the ring of invariants \(\mathbb{C}[V]^G \):

- \{elementary symm fun \(e_k(1 \leq k \leq n)\}\} \quad \prod_{i=1}^{n} (1 + tx_i) = \sum_{k=0}^{n} e_k(x) t^k

- \{power sum \(p_k(1 \leq k \leq n)\}\} \quad p_k(x) = \sum_{i=1}^{n} x_i^k

- \{complete symm fun \(h_k(1 \leq k \leq n)\}\} \quad \prod_{i=1}^{n} (1 - tx_i)^{-1} = \sum_{k=0}^{\infty} h_k(x) t^k
Example: symmetric group action

\[G = \mathfrak{S}_n \curvearrowright V = \mathbb{C}^n : \text{action by coordinate change} \]

\[\mathbb{C}[V]^G = \{\text{symmetric polynomials}\} : \text{invariants} \]

Generators of the ring of invariants \(\mathbb{C}[V]^G \) :

- \{\text{elementary symm fun } e_k(1 \leq k \leq n)\} \quad \prod_{i=1}^{n} (1 + tx_i) = \sum_{k=0}^{n} e_k(x)t^k

- \{\text{power sum } p_k(1 \leq k \leq n)\} \quad p_k(x) = \sum_{i=1}^{n} x_i^k

- \{\text{complete symm fun } h_k(1 \leq k \leq n)\} \quad \prod_{i=1}^{n} (1 - tx_i)^{-1} = \sum_{k=0}^{\infty} h_k(x)t^k

Exponents \(\{1, 2, \ldots, n\} \)

Generators are algebraically independent
Example: symmetric group action (continued)

Define a quotient map $\Phi : V \to \mathbb{C}^n$ by $\Phi(\nu) = (e_1(\nu), e_2(\nu), \ldots, e_n(\nu))$
Example: symmetric group action (continued)

Define a quotient map $\Phi : V \to \mathbb{C}^n$ by $\Phi(v) = (e_1(v), e_2(v), \ldots, e_n(v))$

Lemma

$\Phi : V \to \mathbb{C}^n$ is surjective & \mathfrak{S}_n-invariant

Every fiber $\Phi^{-1}(y)$ ($y \in \mathbb{C}^n$) is a single \mathfrak{S}_n-orbit
Example: symmetric group action (continued)

Define a quotient map $\Phi : V \to \mathbb{C}^n$ by $\Phi(v) = (e_1(v), e_2(v), \ldots, e_n(v))$

Lemma

$\Phi : V \to \mathbb{C}^n$ is surjective & \mathfrak{S}_n-invariant

Every fiber $\Phi^{-1}(y)$ ($y \in \mathbb{C}^n$) is a single \mathfrak{S}_n-orbit

Proof.

Φ surjective \iff the fundamental theorem of algebra (Gauss’s theorem)

i.e., giving \forall coeff of the degree n equation,

\exists n-solutions counting with multiplicity \iff fiber
Example: symmetric group action (continued)

Define a quotient map $\Phi: V \to \mathbb{C}^n$ by $\Phi(v) = (e_1(v), e_2(v), \ldots, e_n(v))$

Lemma

$\Phi: V \to \mathbb{C}^n$ is surjective & \mathfrak{S}_n-invariant

Every fiber $\Phi^{-1}(y)$ ($y \in \mathbb{C}^n$) is a single \mathfrak{S}_n-orbit

Proof.

Φ surjective \iff the fundamental theorem of algebra (Gauss's theorem)
i.e., giving \forall coeff of the degree n equation,
\exists n-solutions counting with multiplicity (\iff fiber)

Thus we conclude $V/\mathfrak{S}_n \simeq \mathbb{C}^n$ via the quotient map Φ

$\Phi: V \to \mathbb{C}^n/\mathfrak{S}_n = \mathbb{C}^n$: generically $[\mathfrak{S}_n : 1]$ map (Galois covering)

Generic fiber $\simeq \mathfrak{S}_n$, inherits regular representation of \mathfrak{S}_n
Orthogonal invariants

\[G = O_n \leftarrow V = \mathbb{C}^n : \text{vector representation (mult of matrix against vector)} \]

Problem

Describe the invariants for \(G \leftarrow V \oplus \cdots \oplus V = V^{\oplus m} \)

\[U := \mathbb{C}^m \quad \implies \quad V^{\oplus m} \cong V \otimes U \cong M_{n,m} \quad \text{coordinates } x_{ij} \text{ on } M_{n,m} \]
Orthogonal invariants

\[G = O_n \sim V = \mathbb{C}^n : \text{vector representation (mult of matrix against vector)} \]

Problem

Describe the invariants for \(G \sim V \oplus \cdots \oplus V = V^{\oplus m} \)

\[U := \mathbb{C}^m \implies V^{\oplus m} \cong V \otimes U \cong M_{n,m} \quad \text{coordinates} \; x_{ij} \; \text{on} \; M_{n,m} \]

FFT for orthogonal invariants:

Theorem (H. Weyl 1939)

\[\mathbb{C}[V^{\oplus m}]^{O_n} = \mathbb{C}[z_{ij} \mid 1 \leq i \leq j \leq m] \quad \text{where} \; z_{ij} = \sum_{k=1}^{n} x_{ki}x_{kj} \]

\[X = (x_{ij}) \in M_{n,m} \implies Z = (z_{ij}) = ^tXX \in \text{Sym}_m \]
Orthogonal invariants

\[G = O_n \sim V = \mathbb{C}^n : \text{vector representation (mult of matrix against vector)} \]

Problem

Describe the invariants for \(G \sim V \oplus \cdots \oplus V = V^\oplus m \)*

\[U := \mathbb{C}^m \iff V^\oplus m \cong V \otimes U \cong M_{n,m} \quad \text{coordinates } x_{ij} \text{ on } M_{n,m} \]

FFT for orthogonal invariants:

Theorem (H. Weyl 1939)

\[\mathbb{C}[V^\oplus m]^{O_n} = \mathbb{C}[z_{ij} \mid 1 \leq i \leq j \leq m] \quad \text{where } z_{ij} = \sum_{k=1}^n x_{ki} x_{kj} \]

\[X = (x_{ij}) \in M_{n,m} \iff Z = (z_{ij}) = ^tXX \in \text{Sym}_m \]

Example

\[m = 1 : \quad \mathbb{C}[V]^{O_n} = \mathbb{C}[\xi] \quad \xi = x_1^2 + \cdots + x_n^2 \]
Contraction invariants

\[G = \text{GL}_n \leftarrow V = \mathbb{C}^n \implies \mathbb{C}[V \oplus m]^G = \mathbb{C} : \text{trivial (NO invariants)} \]
Contraction invariants

\[G = \text{GL}_n \bowtie V = \mathbb{C}^n \implies \mathbb{C}[V \oplus^m]^G = \mathbb{C} : \text{trivial (NO invariants)} \]

Right setting using \(V^* : \text{contragredient (= dual) of } V \)

Problem

Describe invariants for \(G \bowtie V \oplus^p \oplus V^* \oplus^q \)

\[U := \mathbb{C}^p, U' := \mathbb{C}^q \implies V \oplus^p \oplus V^* \oplus^q \cong V \otimes U \oplus V^* \otimes U' \cong M_{n,p} \oplus M_{n,q} \]

coordinates \(x_{ij} \) on \(M_{n,p} \), \(y_{ij} \) on \(M_{n,q} \)
Contraction invariants

\[G = \text{GL}_n \bowtie V = \mathbb{C}^n \implies \mathbb{C}[V^\oplus m]^G = \mathbb{C} : \text{trivial (NO invariants)} \]

Right setting using \(V^* : \text{contragredient (= dual) of } V \)

Problem

Describe invariants for \(G \bowtie V^\oplus p \oplus V^ \oplus q \)*

\[U := \mathbb{C}^p, U' := \mathbb{C}^q \implies V^\oplus p \oplus V^* \oplus q \cong V \otimes U \oplus V^* \otimes U' \cong M_{n,p} \oplus M_{n,q} \]

coordinates \(x_{ij} \) on \(M_{n,p} \), \(y_{ij} \) on \(M_{n,q} \)

FFT for contraction invariants:

Theorem (H. Weyl 1939)

\[\mathbb{C}[V^\oplus p \oplus V^* \oplus q]^{\text{GL}_n} = \mathbb{C}[z_{ij} \mid 1 \leq i \leq p, 1 \leq j \leq q] \quad \text{where} \]

\[z_{ij} = \sum_{k=1}^n x_{ki} y_{kj} : \text{contraction of } X \text{ and } Y \]

\[X = (x_{ij}) \in M_{n,p}, \ Y = (y_{ij}) \in M_{n,q} \implies Z = (z_{ij}) = {}^tXY \in M_{p,q} \]
Second Fundamental Theorem $= \text{SFT}$

describing relations among generators ...
Second Fundamental Theorem = SFT

describing relations among generators ... easiest case is:
Second Fundamental Theorem = SFT

describing relations among generators ... easiest case is:

Theorem (Shephard-Todd 1954)

Assume $\#G < \infty$, $G \curvearrowright V$: linear representation
$\mathbb{C}[V]^G$ is a polynomial ring (no relations)
\[\iff G \text{ is a pseudo-reflection group} \]

Remark

s: pseudo-reflection $= \exists U \subset V$: $(n - 1)$-dim s.t. $s|_U = \text{id}_U$
pseudo-reflection group $= \text{finite group generated by pseudo-reflections}$
Second Fundamental Theorem (SFT)

describing relations among generators ... easiest case is:

Theorem (Shephard-Todd 1954)

Assume \(\#G < \infty \), \(G \curvearrowright V : \) linear representation \(\mathbb{C}[V]^G \) is a polynomial ring (no relations)

\[\iff \ G \text{ is a pseudo-reflection group} \]

Remark

\(s : \text{pseudo-reflection} = \exists U \subset V : (n - 1)\text{-dim s.t. } s|_U = \text{id}_U \)

pseudo-reflection group = finite group generated by pseudo-reflections

If \(\exists \) relations, what we can do? Namely

Problem

How to describe relations among generators?
Return to the general situation $G \acts X$ ($X \subset \mathbb{C}^N$)

G: reductive; X: affine variety (solutions of polynomial equations)

$\{\Delta_1, \ldots, \Delta_m\} \subset \mathbb{C}[X]^G$: generators of invariants
Return to the general situation $G \acts X \quad (X \subset \mathbb{C}^N)$

G : reductive; X : affine variety (solutions of polynomial equations)

$\{\Delta_1, \ldots, \Delta_m\} \subset \mathbb{C}[X]^G$: generators of invariants \implies

Algebra morphism:

$$\Phi^* : \mathbb{C}[y_1, \ldots, y_m] \ni F(y) \mapsto F(\Delta_1, \ldots, \Delta_m) \in \mathbb{C}[X]^G$$

\exists relation $F(\Delta_1, \ldots, \Delta_m) \equiv 0 \iff F(y) \in \text{Ker } \Phi^* =: I$

i.e., $I = \text{Ker } \Phi^* \subset \mathbb{C}[y]$ describes relations completely
Return to the general situation $G \bowtie X$ \hspace{1cm} ($X \subset \mathbb{C}^N$)

$G :$ reductive $; X :$ affine variety (solutions of polynomial equations)

$\{\Delta_1, \ldots, \Delta_m\} \subset \mathbb{C}[X]^G :$ generators of invariants \hspace{1cm} \Rightarrow

Algebra morphism:

$$
\Phi^* : \mathbb{C}[y_1, \ldots, y_m] \ni F(y) \mapsto F(\Delta_1, \ldots, \Delta_m) \in \mathbb{C}[X]^G
$$

\exists relation $F(\Delta_1, \ldots, \Delta_m) \equiv 0 \iff F(y) \in \text{Ker } \Phi^* =: I$

i.e., $I = \text{Ker } \Phi^* \subset \mathbb{C}[y]$ describes relations completely

Theorem (Hilbert’s basis theorem)

\forall ideal $I \subset \mathbb{C}[y]$ admits finite $\#$ of generators $\{F_1, \ldots, F_\ell\}$

Notation

$$
I = (F_1, \ldots, F_\ell) = \sum_{j=1}^{\ell} \mathbb{C}[y]F_j : \text{ideal generated by } \{F_1, \ldots, F_\ell\}
$$
SFT describes the generators of relations $\{F_1, \ldots, F_\ell\}$ completely, which are satisfied by invariants $\{\Delta_1, \ldots, \Delta_m\}$.
SFT describes the generators of relations \(\{F_1, \ldots, F_\ell\} \) completely, which are satisfied by invariants \(\{\Delta_1, \ldots, \Delta_m\} \)

Example (orthogonal invariants)

Recall \(G = O_n \subseteq V^\oplus m \cong M_{n,m} \) \((V = \mathbb{C}^n)\)
coordinates \(x_{ij} \) on \(M_{n,m} \) \(\implies\) orthog invariants: \(z_{ij} = \sum_{k=1}^n x_{ki} x_{kj} \)
\(X = (x_{ij}) \in M_{n,m} \implies Z = (z_{ij}) = tXX \in \text{Sym}_m \)

\(\blacklozenge\) \(m \leq n \implies \{z_{ij}\} : \text{alg independent (no relation)}\)
SFT describes the generators of relations $\{F_1, \ldots, F_\ell\}$ completely, which are satisfied by invariants $\{\Delta_1, \ldots, \Delta_m\}$

Example (orthogonal invariants)

Recall $G = O_n \subset V^{\oplus m} \cong M_{n,m}$ ($V = \mathbb{C}^n$) coordinates x_{ij} on $M_{n,m} \implies$ orthog invariants: $z_{ij} = \sum_{k=1}^n x_{ki}x_{kj}$

$x = (x_{ij}) \in M_{n,m} \implies Z = (z_{ij}) = tXX \in \text{Sym}_m$

1. $m \leq n \implies \{z_{ij}\}$: alg independent (no relation)
2. $m > n \implies Z = (z_{ij})$ is of rank n
 (i.e., relations are $(n + 1)$-th minors in Sym_m)
Geometric point of view

\[l \subset \mathbb{C}[y] : \text{ideal of relations (prime)} \]
\[\iff Y = \{ y \in \mathbb{C}^m \mid F(y) = 0 \ (\forall F \in l) \} \subset \mathbb{C}^m : \text{variety} \]
Geometric point of view

\[I \subset \mathbb{C}[y] : \text{ideal of relations (prime)} \]
\[\leftrightarrow \quad Y = \{ y \in \mathbb{C}^m \mid F(y) = 0 \ (\forall F \in I) \} \subset \mathbb{C}^m : \text{variety} \]

Key theorem:

Theorem (Hilbert’s Nullstellensatz)

(reduced ideals in \(\mathbb{C}[y] \)) \(\ni I \overset{\text{biject}}{\leftrightarrow} \)
\[Y \in (\text{zero pt sets of polynomial equations}) = (Z \text{ closed sets}) \subset \mathbb{C}^m \]
Geometric point of view

\[I \subset \mathbb{C}[y] : \text{ideal of relations (prime)} \]

\[\iff Y = \{ y \in \mathbb{C}^m \mid F(y) = 0 \ (\forall F \in I) \} \subset \mathbb{C}^m : \text{variety} \]

Key theorem:

Theorem (Hilbert’s Nullstellensatz)

(reduced ideals in $\mathbb{C}[y]$) \ni I \overset{\text{bijec\^t}}{\leftrightarrow}

\[Y \in (\text{zero pt sets of polynomial equations}) = (Z \text{ closed sets}) \subset \mathbb{C}^m \]

- \[I = \mathbb{I}(Y) = \{ F \in \mathbb{C}[y] \mid F\big|_Y \equiv 0 \} \subset \mathbb{C}[y] \]
- \[Y = \mathbb{V}(I) = \{ y \in \mathbb{C}^m \mid F(y) = 0 \ (\forall F \in I) \} \subset \mathbb{C}^m \]
Geometric point of view

\[I \subset \mathbb{C}[y] : \text{ideal of relations (prime)} \]
\[\iff Y = \{ y \in \mathbb{C}^m \mid F(y) = 0 \ (\forall F \in I) \} \subset \mathbb{C}^m : \text{variety} \]

Key theorem:

Theorem (Hilbert’s Nullstellensatz)

(reduced ideals in \(\mathbb{C}[y] \)) \(\exists \) \(I \) \(\overset{\text{bijecl}}{\leftrightarrow} \)

\[Y \in (\text{zero pt sets of polynomial equations}) = (\text{Z closed sets}) \subset \mathbb{C}^m \]

- \(I = \mathbb{I}(Y) = \{ F \in \mathbb{C}[y] \mid F \mid_Y \equiv 0 \} \subset \mathbb{C}[y] \)
- \(Y = \mathbb{V}(I) = \{ y \in \mathbb{C}^m \mid F(y) = 0 \ (\forall F \in I) \} \subset \mathbb{C}^m \)

\(I : \text{prime ideal} \iff Y : \text{irreducible} \)

(i.e., \(Y = Y_1 \cup Y_2 \ (Y_i : \text{Z closed}) \implies Y = Y_1 \text{ or } Y = Y_2 \))
Conclusion:

\[\text{SFT = describe algebraic variety defined by relations among invariants} \]

To be continued...